THIRD EDITION

FOREST SOILS

RICHARD F. FISHER and DAN BINKLEY

CONTENTS

Preface	хi
1. Introduction	1
Forest Soils Differ in Many Ways from Cultivated Soils	4
Forest Soil Science Is as Old as Soil Science Itself	7
Summary	10
2. Forest Soils and Vegetation Development	11
Pedogenic Processes Operate Simultaneously at Varying Rates	11
External Factors Guide Soil Formation	14
Parent Material	15
Nonsilicates	15
Silicates	17
Parent Material Classification	25
Climate and Weathering	25
Biological Weathering	28
Topography, Time, and Biota	29
Vegetation and Soil Develop Together But at Quite Different Rates	30
Soil Properties Influence Vegetation Development	34
Summary	35
3. Soils of the Major Forest Biomes	37
Soils Commonly Differ as Much Within Regions as Around	
the Globe	37
Soil Types Are Distributed Unevenly Around the Globe	41
Major Forest Types Occur on a Variety of Soils	42
Tropical Forests Are Diverse and Occur on a Diverse Range	
of Soils	42
Tropical Climates Are Warm Year Round, and Precipitation	
Varies Among Regions	44 46
Rain Forests Have no Prolonged Dry Season Monsoon Forests Have Seasonal Periods of Drought and Rain	40 48
Monsoon i ofests trave seasonal retions of Drought and Ram	
	vii

	Many Tropical Forests Are Dry	49
	Tropical Montane Forests Have Moderate, Uniform Climates	5(
	Plantation Forestry Is Extensive Throughout the Tropics	50
	Some Temperate Broad-Leaved Forests Are Evergreen	53
	Temperate Rain Forests Are Among the Largest in the World	53
	Lowland Coniferous Forests Are Major Sources of Timber	55
	Temperate Zone Mixed Forests Include Conifers and Hardwoods	55
	Temperate Montane Conifer Forests	57
	Boreal Forests Cover Vast Areas	58
	Summary	60
	•	•
4.	Physical Properties of Forest Soils	61
	Soil Texture Is Fundamental	61
	Texture Influences Tree Growth	63
	Soil Structure Moderates Effects of Soil Texture	64
	Bulk Density Accounts for the Composition of Minerals, Organics,	
	and Pore Space	65
	Life in the Soil Depends on the Soil Atmosphere	67
	Soil Structure Can Be Harmed by Inappropriate Management Activities	69
	Soil Color Incorporates Effects of Organic Matter and	•
	Other Factors	70
	Soil Temperature Influences Biotic and Abiotic Process Rates	71
	Soil Water Is Part of the Hydrological Cycle	75
	Water Flow in Unsaturated Soils Depends on Water Content	-
	and Hydraulic Conductivity	77
	Factors Affecting Infiltration and Losses of Water	78
	Trees May Get Water from the Capillary Fringe	81
	Trees Require Great Quantities of Water	82
	Physics in a Landscape Context Can Determine Soil Chemistry	83
	Summary	85
	out	0.
5.	Soil Chemistry and Nutrient Uptake	87
	Major Soil Anions Include Chloride, Sulfate, Bicarbonate,	
	and Sometimes Nitrate	87
	Major Soil Cations Include Sodium, Potassium, Calcium,	
	Magnesium, and Sometimes Aluminum	88
	Soil Solutions Also Contain Silicic Acid, Dissolved Organic	
	Chemicals, and Gases	91
	Solution Chemistry Is Regulated by Inputs, Outputs,	
	and Reversible Reactions	92
	The Solid Phase of the Soil Has Four Major Components	92
	Cations Exchange Is a Reversible Electrostatic Sorption	94

		CONTENTS	ix
	Cation Valence and Hydrated Radius Explain the Selectivi	ty	
	of the Exchange Complex	,	96
	The Ratio of Aluminum to Base Cations May (or May No	t)	
	Be Important		97
	Soil Acidity Involves Acid-Base Reactions Between Solid		
	and Solution Phases		98
	The pH of Soil Solutions Is Buffered by the Solid Phases		99
	Factor 1: Increases in Salt Concentration Decrease pH		100
	Factor 2: Soil pH Decreases as Total Soil Acidity Increa Factor 3: The Distributions of Cations Is Often Called	ses	101
	Base Saturation		102
	Factor 4: The Strength of Soil Acids Also Influences pH Comparisons of Titration Curves Can Explain Why pH		103
	Differs Among Soils		104
	Soil pH Increases from Upper-Slope to Lower-Slope Site Phosphate and Sulfate Concentrations Depend on	:S	105
	Specific Adsorption		106
	Nutrient Supply and Upstake		108
	Nutrient Uptake Depends on Soil Chemistry and the		
	Absorbing Surface Area of Trees		111
	Nutrient Uptake Also Depends on Uptake Kinetics		112
	Soil Solutions Are Sampled in Several Ways, and No Way Is Perfect		
	Soil Solutions and Plant Uptake Are Linked to Ecosystem		114
	Biogeochemistry		115
	Summary		115
	·		113
6.	Biology of Forest Soils		118
	Soil Organisms Perform a Wide Variety of Functions		119
	Soil Fauna Play a Role in Natural Soil Ecosystems		120
	Macrofauna Are Movers and Shakers		120
	Vertebrates		120
	Arthropods Annelids		121
	Mesofauna Fragment Debris and Promote Soil Structure		122
	Microfauna Tragment Debits and Fromote Son Structure Microfauna Thrive in Soil Water Films		123 123
	Nematodes		
	Rotifers		123 124
	Protozoa		124
	Soil Microflora Are Small in Size, Great in Importance		124
	Bacteria Bacteria		
	Actinomycetes		125 129
	Fungi		130
	Algae		131
	-		

X CONTENTS

	Higher Plant Rhizospheres Are Hotbeds of Microbial Activity	133
	Soil Conditions Strongly Influence Soil Organism Activity	135
	Soil Organisms May Be Valuable Indicators of Soil Health	136
	Summary	137
7.	Soil Organic Matter	139
	Organic Matter Fuels the Soil's Engine	139
	Forest Floors Have a Distinctive Structure	141
	Humus Layers Come in a Variety of Types	141
	Several Forest Floor Classifications Are Used in North America	142
	Forest Floor Decomposition Varies Among Humus Types	144
	Many Factors Control Forest Floor Accumulation	146
	Physical Properties of Forest Floors	148
	Chemical Properties of Forest Floors	149
	Natural and Managed Processes Alter the Forest Floor	151
	Organic Carbon Is a Vital Constituent of the Soil	155
	Soil Organic Carbon Occurs in a Wide Variety of Forms	156
	Soil Organic Matter Performs Many Functions	158
	Summary	160
8.	Soils and Roots	161
	Root Systems Have a Characteristic Form and an	
	Enormous Extent	161
	Form May Be Obligatory or Facultative	162
	Roots Grow and Grow	164
	Soil Conditions Alter Root Growth	166
	Physical Impedance	166
	Soil Moisture	167
	Soil Temperature	169
	Soil Chemistry	171
	Roots Contribute Significantly to Soil Properties	172
	Mycorrhizae—Unique Root Forms with an Important Function	173
	There Are Two Types of Mycorrhizae	174
	Ectomycorrhizae	174
	Endomycorrhizae	176
	Soils Factors Affect Mycorrhizal Development	178
	Mycorrhizae Benefit the Host	180
	Summary	182
9.	Forest Biogeochemistry	184
	Energy Flows with Electrons	184

CONTEN	15	XI
Nutrient Cycles Involve Pools and Fluxes	13	87
Annual Nutrient Cycling Is Greater Than Annual Inputs	13	89
Litter Decays Like Radioactive Material But for Different		
Reasons	15	90
Forest Floors Accumulate and May Or May Not Reach		
Steady States	19	94
How Does Litter Become Soil Humus?	15	97
Litterfall and Root Death Are Major Pathways of		
Nutrient Return	19	97
Trees Adjust to Nutrient Limitations	1	99
Nutrient Transport and Mobility within Plants Are Also		
Important	2	00
Internal Recycling Increases as Nutrient Availability Increases	2	01
Nutrient Inputs Have Three Major Vectors	2	02
Cycles Differ Substantially Among Nutrients	2	07
Carbon Flows Through Forests	2	10
Oxygen Fuels Energy Reactions	2	12
Hydrogen Ion Budgets Integrate Biogeochemical Cycles	2	13
The Nitrogen Cycle Dominates Forest Nutrition	2	18
Phosphorus Cycling Is Controlled by Both Biotic and		
Geochemical Processes	2	24
Potassium Is the Most Mobile Soil Nutrient	2	3(
Calcium and Magnesium Have Similar Biogeochemistries	2	31
Sulfur Cycling Is More Complicated Than Nitrogen Cycling	2	32
Small Quantities of Micronutrients Play Large Roles	2	34
Nutrient Use and Nutrient Supply Change as Stands Develop	2	35
Three Rules of Biogeochemistry	2	37
Summary	2	39
0. Fire Effects	2	41
Most Forests Burn	2	4]
Fire Physics Largely Determine Fire Impacts on Forest Soils		43
Fires Remove Nutrients by Fire Processes	_	4
Nitrogen Losses Are Primarily from Oxidation, Not	_	
Volatilization	2	4:
Nutrient Leaching Rates Increase After Fire		:50
Erosion May Increase Nutrient Losses After Fire		:50
Fires May Decrease Water Infiltration Into Soils		:52
Ash May Contain Large Quantities of Nutrients		25:
Direct Nutrient Release from Soil Heating May Be Important		25.
Decomposition and Microbial Activity Change After Fire		25.
Soil Acidity Declines and pH Rises after Fire		254
Base Cations May Increase After Fire		250

XII CONTENTS

	Phosphorus Availability Increases After Fire,	
	at Least Temporarily	257
	Nitrogen Availability Also Increases After Fire	258
	Nitrogen Fixation Increases After Fire Only If Symbiotic	
	Nitrogen-Fixing Species Increase	258
	Long-Term Effects of Fire on Soil Productivity Remain	
	Uncertain	259
	Summary	260
11.	Forest Soil Classification	262
	Site Index Is a Troubling But Preferred Way to Measure	
	Site Quality	263
	Soil Classification and Survey Are Essential to Sound Forest	-00
	Management	265
	The USDA National Cooperative Soil Survey	266
	Forest Soil Surveys Are Common on Industrial Forestland	267
	Multifactor Classification Schemes Have Gained Popularity	269
	Soil Factors Dramatically Influence Forest Development	
	and Tree Growth	270
	Interpretations to Aid in Forest Management Can Be	
	Developed for Soil Map Units	276
	Summary	280
	·	
12.	Nutrition Management: Nutrient Limitations	282
	Nitrogen and Phosphorus Are the Most Common	
	Limiting Nutrients	282
	Basic Approaches to Diagnosing Nutrient Limitation	284
	Establishment of Field Trials Is the First Step	286
	Relating Response to Site Variables Is the Second Step	288
	Foliar Nutrients May Identify Nutrient Limitations	289
	Visible Symptoms Can Indicate Severe Problems	209
	Nutrient Concentrations Can Identify Major Deficiencies	291
	Vector Analysis May Help Identify Limiting Nutrients	292
	DRIS Combines Foliar Concentrations, Nutrient Ratios,	474
	and Growth	296
	Soil Assays	290
	•	291
	Which Soil Pool Is the Best Indicator of Site Fertility and Nutrient Limitation?	207
		297
	How Available Is Soil Nitrogen? Ion Exchange Resin Bags Are Sensitive to a Range of	298
	Factors	303
	Various Indexes Have Proven Useful for Different Regions	303
	Tarrous indexes flave I tovell Osciul for Different Regions	304

	CONTE	NTS	xiii
	Soil Phosphorus Availability Is Usually Estimated by		
	Extractions		305
	Soil Sulfur Assays Are Similar to Phosphorus Assays		307
	Cation Availability Is Also Difficult to Assess		307
	Soil Micronutrient Assays Are Performed Rarely		308
	The Final Step in Nutrition Assessment Is Operational Assessment of Sites		308
	Interaction Between Nutrition and Pests and Pathogens		308
	Thinning Increases the Nutrient Supply per Tree		310
	Summary		310
	Summary		310
3.	Nutrition Management: Fertilization		311
	Fertilization Commonly Increases Net Primary Production		
	and Reduces Allocation to Roots, Increasing Wood Growth		313
	Fertilization Changes Stand Characteristics		314
	Nutrient Limitation Is Common Across All Stands Ages		316
	Application Methods Include Airplanes, Helicopters, and		
	Tractors		316
	Formulation Is Important		317
	Nitrogen Fertilizers Are Synthesized from Nitrogen Gas		
	and Natural Gas		318
	Phosphate Fertilizers Are Mined		320
	Sulfur Fertilizers Are Used Mainly to Lower soil pH		321
	Fertilization with "Lime" Material Can Alleviate Calcium		
	and Magnesium Deficiencies		321
	Raising Soil pH Requires Large Amounts of Lime		322
	Only About 10 to 20 Percent of the Fertilizer Enters the Trees		324
	Where Did the Missing Fertilizer Go?		325
	Why Doesn't More Fertilizer Get Into the Trees?		326
	Fertilization Increases Growth for Periods Ranging from		
	5 Years to Entire Rotations		327
	Fertilizer Responses May Differ Among Species and Genotypes	i	327
	Site Preparation May Increase the Fertilization Response		328
	Fertilization May Affect Nontarget Vegetation		329
	Fertilization Usually Has Minor Effects on Water Quality		330
	Waste Disposal on Forestlands May Increase Stand		
	Productivity		332
	Wastewater Is a Rich Nutrient Solution		333
	Sewage Sludge Resembles Soil Humus		333
	Heavy Metal Concentrations in Sludge Are a Serious Concern		335
	Nutrition Assessment Provides Information for Decision Makin	ng	335
	Forest Nutrition Management Involves Unavoidable		
	Uncertainty		336
	Inflation and Changes in Stumpage Values May Alter Profitab	ility	337

XIV CONTENTS

	Compound Interest Favors Late-Rotation Fertilization	338
	Growth Responses Are Uncertain	338
	Breakeven Analysis Is the Simplest Approach	339
	A Decision Tree Identifies Choices, Probabilities, and Outcomes	340
	Fertilization Entails two Kinds of Risk	341
	What Is the Value of Perfect Information?	343
	What Is the Value of Imperfect Information?	345
	The Value of Research Depends on Existing Knowledge and Forest Size	346
	Fertilization Is an Investment of Energy as Well as Money	346
	Summary	347
14.	Nutrition Management: Biological Nitrogen Fixation	348
	Nitrogen Fixation Was Harnessed in Forestry Shortly After Its Discovery	348
	Nitrogenase Enzyme Reduces Nitrogen Gas to Ammonia	350
	Three Types of Nitrogen Fixers May Be Important in	
	Forest Soils	350
	Symbiotic Nitrogen Fixation Can Be Used in Nutrition	
	Management Program	351
	Nitrogen Fixation Rates Are Difficult to Measure	354
	¹⁵ N Labeling Shows High Rates of Nitrogen Fixation for	
	Leucaena and Casuarina	355
	Natural Abundance of ¹⁵ N Is Affected by Nitrogen Fixation	
	in Forests	355
	Nitrogen Accretion and Chronosequences Can Catch Large	
	Rates of Nitrogen Fixation	356
	Acetylene Reduction Assays Estimate Current Rates of	
	Nitrogen Fixation	359
	Favorable Environments Allow High Rates of Nitrogen Fixation	361
	Does Nitrogen Fixation Decline as Soil Nitrogen Increases?	362
	Nitrogen Fixation Accelerates Nitrogen Cycling	363
	Nitrogen-Fixing Plants Also Affect Cycles of Other Nutrients	363
	Nitrogen-Fixing Trees Acidify Soil in Some Ecosystems	
	But Not in Others	364
	Soil Carbon Increases Under Nitrogen-Fixing Species	366
	Many Silvicultural Strategies Can Employ Nitrogen-Fixing	26
	Species	366
	Nitrogen Fixers Can Take Advantage of Unused Site Resources	361
	When Does Fixed Nitrogen Begin to Benefit Associated Crop	266
	Trees? The Growth Response to Nitrogen Fixetian May Hove Three	368
	The Growth Response to Nitrogen Fixation May Have Three	369
	Components The Crop Tree Response to Nitrogen Varies with Site	50:
	Fertility	370
	1 CILILLY	211

		CONTENTS	vx
	How Much Nitrogen Fixation Is Needed to Supply Crop Is a Kilogram of Fixed Nitrogen Equal to a Kilogram of	Trees?	371
	Fertilizer Nitrogen?		372
	Nitrogen-Fixing Plants Can Alter the Impact of Animals		
	and Diseases		373
	Niftrogen Fixation May Have Multiple Resource Benefits		373
	Why Isn't Nitrogen Fixation Used More Often in Forestr		374
	Is Nitrogen Fixation Profitable?	•	374
	Summary		375
15.	Forest Soil Management		376
	· ·		2.0
	Soil Management Plays a Major Role in Intensive Planta	tion	
	Forestry		376
	Land Clearing May Adversely Impact Soil Productivity		377
	Soil Preparation for Stand Establishment		380
	Scarification Is a Means of Exposing Mineral Soil		380
	Cultivation Often Increases Survival and Early Growth of	İ	200
	Planted Seedlings		380
	Soil Management on Extreme Sites		383
	Dry, Sandy Soils Pose Special Problems to Forest Man	_	385
	Irrigation or Fertigation on Dry Sites Is Becoming Pop	oular	387
	Seasonally Flooded Soils Present Unique Problems		387
	Peatlands Are Often Managed for Forest Production		389
	Gelisals Present Major Problems		391
	Turning Mine Spoil Back into Soil is a Challenge		391
	Management of Nursery Soils		394
	Nursery Site Selection Is Important to Successful Produ	uction	395
	Soil Texture Is Often the Key to Success or Failure		396
	Site Leveling May Be Necessary But Is Problematic		396
	Soil Fertility and Acidity Management Are Crucial to		
	Nursery Success		397
	Soil Organic Matter Is Generally the Key to a Product	ive	

398

399

400

401

402

403

404

405

406

Nursery

Stock Production

Soil Testing Is a Must

and Growth

Summary

Cover Crops Serve Several Purposes

Fertilization Is a Two-Step Process

Other Organic Additions Are Generally Necessary

A Fertilization Program Is Essential to Excellent Nursery

Tree Conditioning for Transplanting Improves Survival

Biocides Protect Seedlings But Alter Nursery Soil Processes

xvi CONTENTS

16.	Long-Term Soil Productivity	40
	There Are Three Major Ways to Be Wrong	40
	How Rapidly Do Forest Soils Change in the Absence of	
	Management?	40
	How Do Forest Soils Change Under the Influence of	
	Different Species?	41
	How Does Reforestation Improve Former Agricultural Soils?	41
	How Does Harvesting Affect Soil Fertility?	42
	Will Acid Deposition Degrade Forest Soils?	42
	If the Climate Warms, Will Forest Soils Change?	43
	Summary	43
Rei	ferences	43
Ind	ex ·	00