

Single Piles and Pile Groups Under Lateral Loading Lymon C. Reese William F. Van Impe

Contents

PREFACE			XV		
1	TECHNIQUES FOR DESIGN				
		Introduction	1		
		Occurrence of laterally loaded piles			
		Nature of the soil response	3		
		Response of a pile	7		
		1.4.1 Introduction	2 3 7 7		
		1.4.2 Static loading	7		
		1.4.3 Cyclic loading	7		
		1.4.4 Sustained loading	8		
		1.4.5 Dynamic loading	9		
	1.5	Models for use in analyses of a single pile	11		
		1.5.1 Elastic pile and elastic soil	11		
		1.5.2 Elastic pile and finite elements for soil	12		
		1.5.3 Rigid pile and plastic soil	12		
		1.5.4 Characteristic load method	13		
		1.5.5 Nonlinear pile and p-y model for soil	14		
	1.6	Models for groups of piles under lateral loading	16		
		Status of current state-of-the-art	18		
2	DEI	RIVATION OF EQUATIONS AND METHODS OF SOLUTION	21		
	2.1	Introduction	21		
	2.2	Derivation of the differential equation	21		
		2.2.1 Solution of Reduced Form of Differential Equation	25		
		2.2.2 Solution of the Differential Equation by Difference Equations	29		
	2.3	Solution for $E_{py} = k_{py}x$	35		
		2.3.1 Dimensional Analysis	36		
		2.3.2 Equations for $E_{py} = k_{py}x$	41		
		2.3.3 Example Solution	42		
		2.3.4 Discussion	46		
	2.4	Validity of the mechanics	47		
3	MODELS FOR RESPONSE OF SOIL AND WEAK ROCK				
	3.1	Introduction			
	3.2	Mechanics concerning response of soil to lateral loading 5			
		3.2.1 Stress-deformation of soil	50		
		3.2.2 Proposed model for decay of E_s	50		
		3.2.3 Variation of stiffness of soil $(E_s \text{ and } G_s)$ with depth	51		

VIII Contents

	3.2.4	Initial stiffness and ultimate resistance of p-y curves from	
		soil properties	
	3.2.5	Subgrade modulus related to piles under lateral loading	
	3.2.6	Theoretical solution by Skempton for subgrade modulus and for	
		p-y curves for saturated clays	
	3.2.7		
	•	modulus in analyzing a pile under lateral loading	
3.3	Influer	nce of diameter on p-y curves	
	3.3.1	Clay	
	3.3.2	Sand	
3.4		nce of cyclic loading	
J. 7	3.4.1		
	3.4.2		
3.5		imental methods of obtaining p-y curves	
3.3	3.5.1	Soil response from direct measurements	
	3.5.2		
	2.5.2	Nondimensional methods for obtaining soil response	
2 4	J.J.J	recommendations for computing p-y curves	
3.6			
		Terzaghi McClelland and Focht for clay (1958)	
2 ~	3.6.2	MicClenand and Pocht for clay (1990)	
3.7		rves for clay Selection of stiffness of clay	
	3.7.1	Selection of stiffness of clay	
	3.7.2	Response of soft clay in the presence of free water	
		Response of stiff clay in the presence of free water	
	3.7.4	Response of stiff clay with no free water	
3.8		rves for sands above and below the water table	
	3.8.1	Detailed procedure	
		Recommended soil tests	
		Example curves	
3.9	p-y cu	rves for layered soils	
	3.9.1	Method of Georgiadis Example p-y curves	
	3.9.2	Example p-y curves	
3.10	p-y cu	rves for soil with both cohesion and internal friction	
	3.10.1	Background	
	3.10.2	Recommendations for computing p-y curves	
	3.10.3	Discussion	
3.11	Other	recommendations for computing p-y curves	
	3.11.1	Clay .	
	3.11.2	2 Sand	
3.12	modif	ications to p-y curves for sloping ground	
		Introduction	
		Equations for ultimate resistance in clay	
		Equations for ultimate resistance in sand	
3.13		of batter	
3.14		ing force at bottom of pile	
3.15		irves for weak rock	
J.1J		Introduction	
		Prield tests	
		Interim recommendations	
	2.13.3	Comments on equations for predicting p-y curves for rock	
	5.15.4	Comments on educations for bremening b-k entres for fock	

		Content	s IX			
	3.16	Selection of p-y curves	106			
		3.16.1 Introduction	106			
		3.16.2 Factors to be considered	106			
		3.16.3 Specific suggestions	107			
4	STR	UCTURAL CHARACTERISTICS OF PILES	109			
		Introduction	109			
	4.2	Computation of an equivalent diameter of a pile with a noncircular				
		cross section	109			
	4.3	Mechanics for computation of m_{ult} and $e_p i_p$ as a function of bending				
		moment and axial load	111			
	4.4	Stress-strain curves for normal-weight concrete and structural steel	114			
		Implementation of the method for a steel h-section Implementation of the method for a steel pipe	116			
		Implementation of the method for a reinforced-concrete section	118 119			
	7.7	4.7.1 Example computations for a square shape	119			
		4.7.2 Example computations for a signate shape	121			
	4.8	Approximation of moment of inertia for a reinforced-concrete section	121			
			1241			
5	ANALYSIS OF GROUPS OF PILES SUBJECTED TO INCLINED					
	ANI	DECENTRIC LOADING	125			
	5.1	Introduction	125			
	5.2	Approach to analysis of groups of piles	126			
	5.3 Review of theories for the response of groups of piles to inclined and					
		eccentric loads	126			
	5.4	Rational equations for the response of a group of piles under				
		generalized loading	129			
		5.4.1 Introduction	129			
	E	5.4.2 Equations for a two-dimensional group of piles	132			
	3.3	Laterally loaded piles 5.5.1. Mayarment of pile head due to applied loading	136			
		5.5.1 Movement of pile head due to applied loading 5.5.2 Effect of batter	136 136			
	5.6	Axially loaded piles	137			
	5.0	5.6.1 Introduction	137			
		5.6.2 Relevant parameters concerning deformation of soil	137			
		5.6.3 Influence of method of installation on soil characteristics	139			
		5.6.4 Methods of formulating axial-stiffness curves	140			
		5.6.5 Differential equation for solution of finite-difference equation				
		for axially loaded piles.	142			
		5.6.6 Finite difference equation	145			
		5.6.7 Load-transfer curves	145			
	5.7	Closely-spaced piles under lateral loading	151			
		5.7.1 Modification of load-transfer curves for closely spaced piles	151			
		5.7.2 Concept of interaction under lateral loading	152			
		5.7.3 Proposals for solving for influence coefficients for closely-spaced				
		piles under lateral loading	152			
		5.7.4 Description and analysis of experiments with closely-spaced piles installed in-line and side-by-side	155			
		5.7.5 Prediction equations for closely-spaced piles installed in-line	155			
		and side-by-side	158			

X Contents

		5.7.6	Use of modified prediction equations in developing p-y curves	
			for analyzing results of experiments with full-scale groups	160
		5.7.7	Discussion of the method of predicting the interaction of closely-	
			spaced piles under lateral loading	173
	5.8	Propo	sals for solving for influence coefficients for closely-spaced piles	
	5.0		axial loading	173
				173
			Introduction	
			Concept of interaction under axial loading	174
			Review of relevant literature	174
		5.8.4	Interim recommendations for computing the efficiency of groups	
			of piles under axial loading	177
	5.9		sis of an experiment with batter piles	178
			Description of the testing arrangement	178
		5.9.2	Properties of the sand	179
		5.9.3	Properties of the pipe piles	181
		5.9.4	Pile group	181
			Experimental curve of axial load versus settlement for single pile	182
			Results from experiment and from analysis	183
			Comments on analytical method	185
6	ANA	ALYSI	S OF SINGLE PILES AND GROUPS OF PILES SUBJECTED	
	TO	ACTIV	E AND PASSIVE LOADING	187
	6.1	Natur	e of lateral loading	187
			e loading	187
			Wind loading	187
			Wave loading	189
			Current loading	194
			Scour	195
			Ice loading	197
		6.2.5	Ship impact	198
				198
			Loads from miscellaneous sources	
	6.3		piles or groups of piles subjected to active loading	199
			Overhead sign	199
			Breasting dolphin	203
			Pile for anchoring a ship in soft soil	207
			Offshore platform	213
	6.4	Passiv	e loading	223
		6.4.1	Earth pressures	223
		6.4.2	Moving soil	224
			Thrusts from dead loading of structures	226
	6.5		e piles or groups of piles subjected to passive loading	226
		6.5.1	Pile-supported retaining wall	226
			Anchored bulkhead	231
			Pile-supported mat at the Pyramid Building	237
			Piles for stabilizing a slope	245
			Piles in a settling fill in a sloping valley	251
		C.C.D	ries in a setting iii in a sioping vancy	231
7	CAS	SE STU	IDIES	259
•	7.1		luction	259
	7.2		installed into cohesive soil with no free water	260
	, .2		Bagnolet	260
				

Contents XI

XII Contents

		8.8.7 Installation of test piles	332
		8.8.8 Test procedures and details of loading	334
		8.8.9 Penetrometer tests	335
		8.8.10 Ground settlement due to pile driving	338
		8.8.11 Ground settlement due to lateral loading	339
		8.8.12 Recalibration of test piles	339
		8.8.13 Graphical presentation of curves showing bending moment	340
		8.8.14 Interpretation of bending moment curves to obtain p-y curves	341
	8.9	Summary	346
9	IMP	LEMENTATION OF FACTORS OF SAFETY	347
		Introduction	347
		Limit states	347
		Consequences of a failure	348
		Philosophy concerning safety coefficient	350
		Influence of nature of structure	351
		Special problem in characterizing soil	351
		9.6.1 Introduction	351
		9.6.2 Characteristic value of soil parameters	352
	9.7	Level of quality control	353
		Two general approaches to selecting the factor of safety	353
		Global approach	354
		9.9.1 Introductary comments	354
•		9.9.2 Recommendations of the American Petroleum Institute	355
	9.10	Method of partial safety factors (psf)	356
		9.10.1 Introduction	356
		9.10.2 Suggested values for partial factors for design of laterally loaded piles	356
		9.10.3 Example computations	358
	9.11	Method of load and resistance factors (LRFD)	358
		9.11.1 Introduction	358
		9.11.2 Loads addressed by the LRFD specifications	359
		9.11.3 Resistances addressed by the LRFD specifications	359
٠		9.11.4 Design of piles by the LRFD specifications	360
	9.12	Concluding comments	360
10	SUC	GGESTIONS FOR DESIGN	363
•		Introduction	363
		Range of factors to be considered in design	363
		Validation of results from computations for single pile	364
		10.3.1 Introduction	364
		10.3.2 Solution of example problems	364
		10.3.3 Check of echo print of input data	364
		10.3.4 Investigation of length of word employed in internal computations	365
		10.3.5 Selection of tolerance and length of increment	365
		10.3.6 Check of soil resistance	365
		10.3.7 Check of mechanics	366
		10.3.8 Use of nondimensional curves	366
	10.4	Validation of results from computations for pile group	366
		Additional steps in design	367
		10.5.1 Risk management	367
		10.5.2 Peer review	367
			1

Cont	ents	XIII
10.5.3 Technical contributions 10.5.4 The design team		367 368
APPENDICES		
A Broms method for analysis of single piles under lateral loading B Nondimensional coefficients for piles with finite length, no axial load,		369
constant $E_p I_p$, and constant E_s C Difference equations for solving the problem of step-tapered beams		385
on foundations having variable stiffness D Instructions for use of student versions of computer programs LPILE		395
and GROUP E Nondimensional curves for piles under lateral loading for case where $E_{py} = K$	r	405 409
F Tables of values of efficiency measured in tests of groups of piles under lateral loading	yy .	419
G Horizontal stresses in soil near shaft during installation of a pile		423
H Use of data from uninstrumented piles under lateral loading to obtain		400
soil response I Eurocode principles related to geotechnical design		429 435
J Discussion of factor of safety related to piles under axial load		439
REFERENCES		443
AUTHOR INDEX		457
SUBJECT INDEX		461