

Wastewater Engineering

Treatment and Reuse

	Prejace	xxi	2-2	Sampling and Analytical Procedures	29
	Acknowledgments	xxv		Sampling	29
	Foreword	xxvii		Methods of Analysis	34
				Units of Measurement for Physical and	
				Chemical Parameters	35
1	Wastewater Engineering	o:		Useful Chemical Relationships	35
-	An Overview		2-3	Physical Characteristics	42
		1		Solids	42
1-1	Terminology	3		Particle Size Distribution	48
1-2	Impact of Regulations on Wastewater			Turbidity	51
	Engineering	3		Color	52
1-3	Health and Environmental Concerns			Absorption/Transmittance	52
	in Wastewater Management	7		Temperature	54
1-4	Wastewater Characteristics	9		Conductivity	56
	Improved Analytical Techniques	10		Density, Specific Gravity, and	
	Importance of Improved Wastewater			Specific Weight	56
	Characterization	10	2-4	Inorganic Nonmetallic Constituents	57
1-5	Wastewater Treatment	10		pН	57
	Treatment Methods	11		Chlorides	59
	Current Status	12		Alkalinity	59
	New Directions and Concerns	15		Nitrogen	60
	Future Trends in Wastewater Treatment	20		Phosphorus	63
1-6	Wastewater Reclamation and Reuse	20		Sulfur	64
	Current Status	21		Gases	64
	New Directions and Concerns	21	_	Odors	70
	Future Trends in Technology	21	2-5	Metallic Constituents	77
1-7	Biosolids and Residuals Management	22		Importance of Metals	77
	Current Status	22		Sources of Metals	77
	New Directions and Concerns	23		Sampling and Methods of Analysis	77
	Future Trends in Biosolids Processing	23		Typical Effluent Discharge Limits	
			_	for Metals ·	78
			2-6	Aggregate Organic Constituents	80
2	Constituents			Measurement of Organic Content	81
_	in Wastewater	27		Biochemical Oxygen Demand (BOD)	81
	44			Total and Soluble Chemical Oxygen	
2-1	Wastewater Constituents	29		Demand (COD and SCOD)	93
	Constituents Found in Wastewater	29		Total and Dissolved Organic Carbon	0.4
	Constituents of Concern in Wastewater	20		(TOC and DTOC)	94
	Treatment	29		UV-Absorbing Organic Constituents	95

	Theoretical Oxygen Demand (ThOD)	96		Sources and Rates of Industrial	
	Interrelationships between BOD, COD,			(Nondomestic) Wastewater Flows	162
	and TOC	96		Infiltration/Inflow	163
	Oil and Grease	98		Exfiltration from Collection Systems	167
	Surfactants	98		Combined System Flowrates	168
2-7	Individual Organic Compounds	99	3-3	Statistical Analysis of Flowrates,	
	Priority Pollutants	99		Constituent Concentrations, and	
	Analysis of Individual			Mass Loadings	170
	Organic Compounds	100		Common Statistical Parameters	170
	Volatile Organic Compounds (VOCs)	100		Graphical Analysis of Data	171
	Disinfection Byproducts	102	3-4	Analysis of Wastewater Flowrate Data	178
	Pesticides and Agricultural Chemicals	102		Definition of Terms	178
	Emerging Organic Compounds	102		Variations in Wastewater Flowrates	179
2-8	Biological Characteristics	104		Wastewater Flowrate Factors	180
	Microorganisms Found in Surface		3-5	Analysis of Constituent Mass	
	Waters and Wastewater	104		Loading Data	181
	Pathogenic Organisms	109		Wastewater Constituent Concentrations	181
	Use of Indicator Organisms	115		Variations in Constituent Concentrations	185
	Enumeration and Identification			Flow-Weighted Constituent	
	of Bacteria	118		Concentrations	192
	Enumeration and Identification			Calculation of Mass Loadings	194
	of Viruses	126		Effect of Mass Loading Variability	
	Polymerase Chain Reaction (PCR)	129		on Treatment Plant Performance	197
	Development of Microorganisms		3-6	Selection of Design Flowrates and	
	Typing Techniques	130		Mass Loadings	197
	New and Reemerging Microorganisms	130		Design Flowrates	199
2-9	Toxicity Tests	130		Design Mass Loadings	205
	Toxicity Terminology	131			
	Toxicity Testing	133			
	Analysis of Toxicity Test Results	134	4	Introduction to Process	
	Application of Toxicity Test Results	136		Analysis and Selection	215
	Identification of Toxicity Components	137	4-1	Reactors Used for the Treatment	215
			4-1	of Wastewater	218
					218
3	Analysis and Selection			Types of Reactors	220
	of Wastewater			Application of Reactors Hydraulic Characteristics of Reactors	220
	Flowrates and				
	Constituent Loadings	153	4-2	Mass-Balance Analysis	222
				The Mass-Balance Principle	222
3-1	Components of Wastewater Flows	154		Preparation of Mass Balances	224
3-2	Wastewater Sources and Flowrates	154		Application of the Mass-Balance	224
	Domestic Wastewater Sources	4		Analysis Stoody State Simplification	225
	and Flowrates	155		Steady-State Simplification	
	Strategies for Reducing Interior Water	1	4–3	Modeling Ideal Flow in Reactors	226
	Use and Wastewater Flowrates	158		Ideal Flow in Complete-Mix Reactor	226
	Water Use in Developing Countries	162		Ideal Flow in Plug-Flow Reactor	227

4-4	Analysis of Nonideal Flow in Reactors			Gas-Liquid Mass Transfer	284
	Using Tracers	229		Liquid-Solid Mass Transfer	293
	Factors Leading to Nonideal Flow		4-9	Introduction to Process Selection	297
	in Reactors	229		Important Factors in Process Selection	297
	Need for Tracer Analysis	231		Process Selection Based	
	Types of Tracers	231		on Reaction Kinetics	299
	Conduct of Tracer Tests	231		Process Selection Based	
	Analysis of Tracer Response Curves	233		on Mass Transfer	300
	Practical Interpretation of Tracer			Process Design Based	
	Measurements	242		on Loading Criteria	301
4-5	Modeling Nonideal Flow in Reactors	245		Bench Tests and Pilot-Plant Studies	301
	The Distinction between Molecular			Reliability Considerations in	
	Diffusion, Turbulent Diffusion,			Process Selection	301
	and Dispersion	245			
	Plug-Flow Reactor with		5	Physical Unit	
	Axial Dispersion	246	J	Physical Unit	
	Complete-Mix Reactors in Series	252		Operations	311
4-6	Reactions, Reaction Rates, and		5-1	Screening	315
	Reaction Rate Coefficients	257		Classification of Screens	315
	Types of Reactions	257		Coarse Screens (Bar Racks)	316
	Rate of Reaction	258		Fine Screens	322
	Reaction Order	259		Microscreens	326
	Types of Rate Expressions	260		Screenings Characteristics	
	Rate Expressions Used in			and Quantities	327
	Environmental Modeling	261	5-2	Coarse Solids Reduction	330
	Effects of Temperature on Reaction			Comminutors	331
	Rate Coefficients	261		Macerators	332
	Analysis of Reaction Rate Coefficients	264		Grinders	333
4-7	Modeling Treatment Process Kinetics	269		Design Considerations	333
	Batch Reactor with Reaction	269	5-3	Flow Equalization	333
	Complete-Mix Reactor with Reaction	270		Description/Application	333
	Complete-Mix Reactors in Series			Design Considerations	335
	with Reaction	271	5-4	Mixing and Flocculation	344
	Ideal Plug-Flow Reactor			Continuous Rapid Mixing in	
	with Reaction	274		Wastewater Treatment	345
	Comparison of Complete-Mix and			Continuous Mixing in	
	Plug-Flow Reactors with Reaction	275		Wastewater Treatment	345
	Ideal Plug-Flow Reactor with			Energy Dissipation in Mixing	
	Retarded Reaction	277		and Flocculation	347
	Plug-Flow Reactor with Axial			Timescale in Mixing	350
	Dispersion and Reaction	279		Types of Mixers Used for Rapid Mixing	
	Other Reactor Flow Regimes and			in Wastewater Treatment	350
	Reactor Combinations	281		Types of Mixers Used for Flocculation	
4–8	Treatment Processes Involving			in Wastewater Treatment	355
	Mass Transfer	283		Types of Mixers Used for Continuous	
	Basic Principle of Mass Transfer	283		Mixing in Wastewater Treatment	359

	New Developments in			Mechanical Aerators	443
	Mixing Technology	361		Energy Requirement for Mixing in	775
5-5	Gravity Separation Theory	361		Aeration Systems	448
	Description	362		Generation and Dissolution of	
	Particle Settling Theory	363		High-Purity Oxygen	448
	Discrete Particle Settling	367		Postaeration	452
	Flocculent Particle Settling	372	5-13	Removal of Volatile Organic Compounds	3
	Inclined Plate and Tube Settling	374		(VOCs) by Aeration	456
	Hindered (Zone) Settling	378		Emission of VOCs	456
	Compression Settling	383		Mass Transfer Rates for VOCs	457
	Gravity Separation in an Accelerated			Mass Transfer of VOCs from Surface	
	Flow Field	383		and Diffused-Air Aeration Processes	459
5-6	Grit Removal	384		Control Strategies for VOCs	463
	Types of Grit Chambers	385		- •	
	Horizontal-Flow Grit Chambers	385	6	Charatari III. A	
	Aerated Grit Chambers	386	0	Chemical Unit	
	Vortex-Type Grit Chambers	392		Processes	475
	Solids (Sludge) Degritting	392	6-1	Role of Chemical Unit Processes in	
	Grit Characteristics, Quantities,			Wastewater Treatment	476
	Processing, and Disposal	394		Application of Chemical Unit Processes	477
5- <i>7</i>	Primary Sedimentation	396		Considerations in the Use of Chemical	
	Description	397		Unit Processes	478
	Sedimentation Tank Performance	405	6-2	Fundamentals of Chemical Coagulation	478
	Design Considerations	406	•	Basic Definitions	479
	Characteristics and Quantities of			Nature of Particles in Wastewater	480
	Solids (Sludge) and Scum	411		Development and Measurement of	
5-8	High-Rate Clarification	411		Surface Charge	481
	Enhanced Particle Flocculation	412		Particle-Particle Interactions	482
	Analysis of Ballasted Particle	1,2		Particle Destabilization with Potential-	
	Flocculation and Settling	412		Determining Ions and Electrolytes	483
	Process Application	414		Particle Destabilization and	
5-9	Large-Scale Swirl and Vortex			Aggregation with Polyelectrolytes	485
• •	Separators for Combined			Particle Destabilization and Removal	
	Wastewater and Stormwater	417		with Hydrolyzed Metal Ions	486
5-10	Flotation		6-3	Chemical Precipitation for Improved	
J-10	Description	419		Plant Performance	493
	Description Design Considerations for	419		Chemical Reactions in Wastewater	
	Dissolved-Air Flotation Systems	400		Precipitation Applications	493
	*	422		Enhanced Removal of Suspended Solids	
5-11	Oxygen Transfer	425		in Primary Sedimentation	497
	Description	425		Independent Physical-	
	Evaluation of Oxygen			Chemical Treatment	498
	Transfer Coefficient	425		Estimation of Sludge Quantities from	
5-12	Aeration Systems	430		Chemical Precipitation	499
	Types of Aeration Systems	430	6-4	Chemical Precipitation for	
	Diffused-Air Aeration	430		Phosphorus Removal	500

	Chemistry of Phosphate Precipitation	501	7-2	Composition and Classification	
	Strategies for Phosphorus Removal	503		of Microorganisms	555
	Phosphorus Removal Using Metal Salts			Cell Components	555
	and Polymers	505		Cell Composition	557
	Phosphorus Removal Using Lime	507	4.	Environmental Factors	558
	Phosphorus Removal with			Microorganism Identification	
	Effluent Filtration	508		and Classification	559
	Comparison of Chemical Phosphorus			Use of Molecular Tools	561
	Removal Processes	508	<i>7</i> -3	Introduction to Microbial Metabolism	563
	Estimation of Sludge Quantities from			Carbon and Energy Sources for	202
	Phosphorus Precipitation	509		Microbial Growth	563
6-5	Chemical Precipitation for Removal			Nutrient and Growth Factor	
	of Heavy Metals and Dissolved			Requirements	565
	Inorganic Substances	514	7-4	Bacterial Growth and Energetics	565
	Precipitation Reactions	514	/-4	Bacterial Reproduction	566
	Coprecipitation with Phosphorus	517		Bacterial Growth Patterns in a	300
6-6	Chemical Oxidation	517		Batch Reactor	566
	Fundamentals of Chemical Oxidation	517		Bacterial Growth and Biomass Yield	567
	Applications	522		Measuring Biomass Growth	567
	Chemical Oxidation of BOD and COD	523		Estimating Biomass Yield and Oxygen	507
	Chemical Oxidation of Ammonia	524		Requirements from Stoichiometry	568
6-7	Chemical Neutralization, Scale Control,			Estimating Biomass Yield	300
-	and Stabilization	526		from Bioenergetics	571
	pH Adjustment	526		Stoichiometry of Biological Reactions	578
	Analysis of Scaling Potential	528		Biomass Synthesis Yields for Different	0.0
	Scaling Control	532		Growth Conditions	579
	Stabilization	532		Observed versus Synthesis Yield	580
6-8	Chemical Storage, Feeding, Piping,		<i>7</i> –5	Microbial Growth Kinetics	580
	and Control Systems	532		Microbial Growth	360
	Chemical Storage and Handling	533		Kinetics Terminology	581
	Dry Chemical-Feed Systems	533		Rate of Utilization of	501
	Liquid Chemical-Feed Systems	536		Soluble Substrates	581
	Gas Chemical-Feed Systems	537		Other Rate Expressions for the	201
	Initial Chemical Mixing	540		Utilization of Soluble Substrate	582
	•			Rate of Soluble Substrate Production	
-	5			from Biodegradable Particulate	
7	Fundamentals of			Organic Matter	583
	Biological Treatment	545		Rate of Biomass Growth with	
<i>7</i> -1	Overview of Biological			Soluble Substrates	584
	Wastewater Treatment	547		Kinetic Coefficients for Substrate	
	Objectives of Biological Treatment	548		Utilization and Biomass Growth	584
	Some Useful Definitions	548		Rate of Oxygen Uptake	585
	Role of Microorganisms in			Effects of Temperature	585
	Wastewater Treatment	548		Total Volatile Suspended Solids and	
	Types of Biological Processes for			Active Biomass -	586
	Wastewater Treatment	551		Net Biomass Yield and Observed Yield	587

7-6	Modeling Suspended Growth		7-12	Anaerobic Fermentation and Oxidation	629
	Treatment Processes	588		Process Description	630
	Description of Suspended Growth			Microbiology	631
	Treatment Processes	589		Stoichiometry of Anaerobic	
	Biomass Mass Balance	589		Fermentation and Oxidation	633
	Substrate Mass Balance	592		Growth Kinetics	634
	Mixed Liquor Solids Concentration			Environmental Factors	635
	and Solids Production	592	<i>7</i> -13	Biological Removal of Toxic and	
	The Observed Yield	595		Recalcitrant Organic Compounds	635
	Oxygen Requirements	595		Development of Biological	
	Design and Operating Parameters	598		Treatment Methods	635
	Process Performance and Stability	600		Anaerobic Degradation	637
	Modeling Plug-Flow Reactors	601		Aerobic Biodegradation	638
7-7	Substrate Removal in Attached Growth			Abiotic Losses	638
	Treatment Processes	602		Modeling Biotic and Abiotic Losses	640
	Substrate Flux in Biofilms	604	<i>7</i> -14	Biological Removal of Heavy Metals	644
	Substrate Mass Balance for Biofilm	605			
	Substrate Flux Limitations	606	8	Suspended Growth	
<i>7</i> –8	Aerobic Biological Oxidation	607	•		
	Process Description	608		Biological Treatment	
	Microbiology	608		Processes	659
	Stoichiometry of Aerobic		8-1	Introduction to the Activated-	
	Biological Oxidation	609		Sludge Process	661
	Growth Kinetics	610		Historical Development	661
	Environmental Factors	610		Description of Basic Process	661
7-9	Biological Nitrification	611		Evolution of the Activated-	
	Process Description	611		Sludge Process	663
	Microbiology	611		Recent Process Developments	664
•	Stoichiometry of		8-2	Wastewater Characterization	666
	Biological Nitrification	612		Key Wastewater Constituents for	
	Growth Kinetics	614		Process Design	666
	Environmental Factors	615		Measurement Methods for Wastewater	
<i>7</i> -10	Biological Denitrification	616		Characterization	671
	Process Description	616		Recycle Flows and Loadings	676
	Microbiology	618	8-3	Fundamentals of Process Analysis	
	Stoichiometry of			and Control	676
	Biological Denitrification	619		Process Design Considerations	677
	Growth Kinetics	621		Process Control	689
	Environmental Factors	623		Operational Problems	694
<i>7-</i> 11	Biological Phosphorus Removal	623		Activated-Sludge Selector Processes	700
	Process Description	624	8–4	Processes for BOD Removal	
	Microbiology	625		and Nitrification	703
	Stoichiometry of Biological			Process Design Considerations	704
	Phosphorus Removal	627		Complete-Mix Activated-Sludge Process	705
	Growth Kinetics	629		Sequencing Batch Reactor Process	720
	Environmental Factors	629		Staged Activated-Sludge Process	734

	Alternative Processes for BOD			Solids Separation	820
	Removal and Nitrification	738		Design of Solids Separation Facilities	833
	Process Design Parameters	740	8-8	Suspended Growth Aerated Lagoons	840
	Process Selection Considerations	740		Types of Suspended Growth	0,0
8-5	Processes for Biological			Aerated Lagoons	841
• •	Nitrogen Removal	749		Process Design Considerations for	
	Overview of Biological Nitrogen-	, ,,		Flow-Through Lagoons	843
	Removal Processes	750		Dual-Powered Flow-Through	
	Single-Sludge Biological Nitrogen-			Lagoon System	853
	Removal Processes	750	8- 9	Biological Treatment with	
	Process Design Considerations	753		Membrane Separation	854
	Anoxic/Aerobic Process Design	761		Overview of Membrane	
	Step-Feed Anoxic/Aerobic			Biological Reactors	854
	Process Design	765		Process Description	855
	Intermittent Aeration Process Design	776		Membrane Fouling Control	857
	Postanoxic Endogenous Denitrification	780		Process Capabilities	858
	Sequencing Batch Reactor		8-10	Simulation Design Models	859
	Process Analysis	781		Model Matrix Format, Components,	00)
	Postanoxic Denitrification with			and Reactions	860
	an External Carbon Source	784		Model Applications	861
	Nitrogen Removal in Anaerobic			77	
	Digestion Recycle Streams	788	9	Attached Growth and	
	Alternative Process Configurations		•		
	for Biological Nitrogen Removal	789		Combined Biological	
	Process Design Parameters	789		Treatment Processes	887
	Process Selection Considerations	789	9-1	Background	888
8-6	Processes for Biological			Evolution of Attached Growth Processes	888
	Phosphorus Removal	799		Mass Transfer Limitations	890
	Biological Phosphorus-		9-2	Trickling Filters	890
	Removal Processes	799		Trickling Filter Classification	
	Process Design Considerations	801		and Applications	893
	Process Control	804		Design of Physical Facilities	896
	Solids Separation Facilities	805		Process Design Considerations	909
	Methods to Improve Phosphorus-			Nitrification Design	922
	Removal Efficiency in BPR Systems	805	9-3	Rotating Biological Contactors	930
	Biological Phosphorus-Removal			Process Design Considerations	932
	Process Performance	807		Physical Facilities for RBC Process	935
	Alternative Processes for Biological			RBC Process Design	937
	Phosphorous Removal	809	9-4	Combined Aerobic Treatment Processes	940
	Process Design Parameters	809		Trickling Filter/Solids Contact	740
	Process Selection Considerations	809		and Trickling Filter/Activated-	
8-7	Selection and Design of Physical			Sludge Processes	940
	Facilities for Activated-Sludge			Activated Biofilter and Biofilter	770
	Processes	816		Activated-Sludge Processes	943
	Aeration System	816		Series Trickling Filter-Activated-	
	Aeration Tanks and Appurtenances	816		Sludge Process	944

	Design Considerations for Combined			Ammonia Toxicity	995
	Trickling Filter Activated-			Liquid-Solids Separation	996
	Sludge Systems	944	10-3	Anaerobic Suspended Growth Processes	996
9-5	Activated Sludge with Fixed-			Complete-Mix Process	997
	Film Packing	952		Anaerobic Contact Process	997
	Processes with Internal Suspended			Anaerobic Sequencing Batch Reactor	999
	Packing for Attached Growth	952		Design of Anaerobic Suspended	
	Processes with Internal Fixed Packing			Growth Processes	999
	for Attached Growth	955	10-4	Anaerobic Sludge Blanket Processes	1005
9-6	Submerged Attached Growth Processes	957		Upflow Sludge Blanket Reactor Process	
7-0	Downflow Submerged Attached	751		Design Considerations for	
	Growth Processes	957		UASB Process	1007
	Upflow Submerged Attached	731		Anaerobic Baffled Reactor	1016
		959		Anaerobic Bujieu Reactor Anaerobic Migrating Blanket Reactor	1017
	Growth Processes				
	Fluidized-Bed Bioreactors (FBBR)	961	10–5	Attached Growth Anaerobic Processes	1018
9-7	Attached Growth			Upflow Packed-Bed Attached	
	Denitrification Processes	962		Growth Reactor	1019
	Downflow Packed-Bed Postanoxic			Upflow Attached Growth Anaerobic	
	Denitrification Processes	962		Expanded-Bed Reactor	1020
	Upflow Packed-Bed Postanoxic			Attached Growth Anaerobic	
	Denitrification Reactors	967		Fluidized-Bed Reactor	1020
	Fluidized-Bed Reactors for Postanoxic			Downflow Attached Growth Processes	1022
	Denitrification	967	10-6	Other Anaerobic Treatment Processes	1024
	Submerged Rotating Biological			Covered Anaerobic Lagoon Process	1024
	Contactors	969		Membrane Separation Anaerobic	
	Attached Growth Preanoxic			Treatment Process	1026
	Denitrification Processes	969			
10	Anaerobic Suspended		11	Advanced Wastewater	
				Treatment	1035
	and Attached Growth		11-1	Need for Advanced	
	Biological Treatment		•••	Wastewater Treatment	1037
No. 1	Processes	983	11-2		1037
10-1	The Rationale for Anaerobic Treatment	984	11-2	Technologies Used for Advanced Treatment	1038
10" 1	Advantages of Anaerobic	704		Residual Constituents in	1036
	Treatment Processes	984		Treated Wastewater	1038
	Disadvantages of Anaerobic	701			1038
	Treatment Processes	986		Classification of Technologies	1036
	Summary Assessment	986		Removal of Organic and Inorganic	1038
10.0		200		Colloidal and Suspended Solids	1036
10-2	General Design Considerations for	004		Removal of Dissolved	1040
	Anaerobic Treatment Processes	986		Organic Constituents	1040
	Characteristics of the Wastewater	987		Removal of Dissolved	1041
	Solids Retention Time	991		Inorganic Constituents	1041
	Expected Methane Gas Production	992		Removal of Biological Constituents	1043
	Treatment Efficiency Needed	994		Process Selection and	1044
	Sulfide Production	994		Performance Data	1044

11-3	Introduction to Depth Filtration	1044		Analysis and Design of Granular	
	Description of the Filtration Process	1044		Activated Carbon Contactor	1152
	Filter Hydraulics	1050		Small-Scale Column Tests	1156
	Analysis of the Filtration Process	1057		Analysis and Design of Powdered	
11-4	Selection and Design Considerations			Activated Carbon Contactor	1159
	for Depth Filters	1069		Activated Sludge with Powdered	
	Available Filtration Technologies	1069		Activated Carbon Treatment	1161
	Performance of Different Types of	1009	11-8	Gas Stripping	1162
	Filter Technologies	1078		Analysis of Gas Stripping	1163
	Issues Related to Design and	1076		Design of Stripping Towers	1174
	Operation of Treatment Facilities	1080		Application	1178
	Importance of Influent	1000	11-9		
	Wastewater Characteristics	1081	11-7	Ion Exchange	1180
				Ion-Exchange Materials	1181
	Selection of Filtration Technology Filter-Bed Characteristics	1081		Typical Ion-Exchange Reactions	1182
		1084		Exchange Capacity of	1100
	Filter Flowrate Control	1089		Ion-Exchange Resins	1183
	Filter Backwashing Systems	1091		Ion-Exchange Chemistry	1185
	Filter Appurtenances	1093		Application of Ion Exchange	1189
	Filter Instrumentation and	1000		Operational Considerations	1196
	Control Systems	1093	11-10	Advanced Oxidation Processes	1196
	Effluent Filtration with	1005		Theory of Advanced Oxidation	1196
	Chemical Addition	1095		Technologies Used to Produce	
	Filter Problems	1096		Hydroxyl Radicals (HO*)	1197
	Need for Pilot-Plant Studies	1096		Applications	1200
11-5	Surface Filtration	1098		Operational Problems	1202
	$Discfilter ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$	1098	11-11	Distillation	1202
	Cloth-Media Disk Filter®	1100		Distillation Processes	1202
	Performance Characteristics	1103		Performance Expectations in	
11-6	Membrane Filtration Processes	1104		Reclamation Applications	1204
	Membrane Process Terminology	1104		Operating Problems	1205
	Membrane Process Classification	1104		Disposal of Concentrated Waste	1205
	Membrane Configurations	1108			
	Membrane Operation	1111	10	District of	
	Membrane Fouling	1117	12	Disinfection Processes	1217
	Application of Membranes	1121	12-1	Regulatory Requirements for	
	Electrodialysis	1131		Wastewater Disinfection	1219
	Pilot Studies for		12-2	Disinfection Theory	1219
	Membrane Applications	1134		Characteristics of	
	Disposal of Concentrated			an Ideal Disinfectant	1220
	Waste Streams	1135		Disinfection Methods and Means	1220
11 <i>-7</i>	Adsorption	1138		Mechanisms of Disinfectants	1223
_	Types of Adsorbents	1138		Factors Influencing the Action	
	Fundamentals of Adsorption	1140		of Disinfectants	1223
	Activated Carbon Adsorption Kinetics	1146	12-3	Disinfection with Chlorine	1231
	Activated Carbon Treatment	· -	-	Characteristics of Chlorine Compounds	1231
	Process Applications	1149		Chemistry of Chlorine Compounds	1234
	2.4				

	Breakpoint Reaction with Chlorine	1237		Effectiveness of Ozone as	
	Measurement and Reporting of			a Disinfectant	1290
	Disinfection Process Variables	1241		Modeling the Ozone	
	Germicidal Efficiency of Chlorine		•	Disinfection Process	1290
	and Various Chlorine Compounds	1242		Required Ozone Dosages	
	Factors That Affect Disinfection			for Disinfection	1293
	Efficiency of Chlorine	1244		Byproduct Formation and Control	1293
	Modeling the Chlorine			Environmental Impacts of	
	Disinfection Process	1248		Using Ozone	1295
	Review of the $C_R t$ Concept	1252		Other Benefits of Using Ozone	1295
	Required Chlorine Dosage		12-8	Other Chemical Disinfection Methods	1295
	for Disinfection	1252		Peracetic Acid	1295
	Formation and Control of			Ozone/Hydrogen Peroxide (Peroxone)	1297
	Disinfection Byproducts	1255		Combined Chemical	
	Environmental Impacts	1257		Disinfection Processes	1297
12-4	Disinfection with Chlorine Dioxide	1258	12-9	Ultraviolet (UV) Radiation Disinfection	1298
	Characteristics of Chlorine Dioxide	1258		Source of UV Radiation	1298
	Chlorine Dioxide Chemistry	1259		UV Disinfection System Components	1270
	Effectiveness of Chlorine Dioxide			and Configurations	1301
	as a Disinfectant	1259		Germicidal Effectiveness of	1501
	Byproduct Formation and Control	1260		UV Radiation	1304
	Environmental Impacts	1261		Modeling the UV Disinfection Process	1309
12-5	Dechlorination	1261		Estimating UV Dose	1311
•	Need for Dechlorination	1261		Ultraviolet Disinfection Guidelines	1316
	Dechlorination of Wastewater	1201		Selection and Sizing of a UV	1510
	Treated with Chlorine and			Disinfection System	1324
	Chlorine Compounds	1261		Troubleshooting UV	152.
	Dechlorination of Chlorine Dioxide	1201		Disinfection Systems	1326
	with Sulfur Dioxide	1264		Environmental Impacts of UV	
12-6	•	1201		Radiation Disinfection	1329
1270	Design of Chlorination and	1074	12-10	Comparison of Alternative	102)
	Dechlorination Facilities	1264		Disinfection Technologies	1329
	Sizing Chlorination Facilities	1264		Germicidal Effectiveness	1330
	Application Flow Diagrams	1266		Advantages and Disadvantages	1330
	Dosage Control	1269		Thermonges and Distantinges	1550
	Injection and Initial Mixing	1270			
	Chlorine Contact Basin Design Chlorine Residual Measurement	1270 1283	12	Water Device	
	Chlorine Storage Facilities	1284	13	Water Reuse	1345
	Chlorine Containment Facilities	1284 1284	13-1	Wastewater Reclamation and Reuse:	
	Dechlorination Facilities			An Introduction	1347
		1286		Definition of Terms	1347
12-7	Disinfection with Ozone	1286		The Role of Water Recycling in the	
	Ozone Properties	1287		Hydrologic Cycle	1347
	Ozone Chemistry	1287		Historical Perspective	1349
	Ozone Disinfection			Wastewater Reuse Applications	1351
	Systems Components	1288		Need for Water Reuse	1354

13–2	Public Health and Environmental			Water and Salt Balances in	
	Issues in Water Reuse	1356		Cooling Tower	1414
	Constituents in Reclaimed Water	1356		Common Water Quality Problems	1.11.0
	Public Health Issues	1358		in Cooling Tower Systems	1416
	Environmental Issues	1358	13-8	Groundwater Recharge with	
	The Evolution of Water Reuse	1050		Reclaimed Water	1422
	Guidelines in the United States	1358		Groundwater Recharge Methods	1423
	Water Reclamation Criteria in	1262		Pretreatment Requirements for	
	Other Countries	1362		Groundwater Recharge	1426
	What Level of Treatment	1267		Fate of Contaminants in Groundwater	1427
	Is Necessary?	1365		Groundwater Recharge Guidelines	1429
13–3	Introduction to Risk Assessment	1366	13 -9	Planned Indirect and Direct Potable	
	Risk Assessment	1366		Water Reuse	1429
	Risk Management	1372		Planned Indirect Potable Water Reuse	1431
	Ecological Risk Assessment	1373		Planned Direct Potable Water Reuse	1432
	Risk Assessment for Water Reuse	1373		Planned Potable Water Reuse Criteria	1432
	Limitations in Risk Assessment			What Is the Ultimate Water	
	for Water Reuse	1374		Reuse Goal?	1433
13–4	Water Reclamation Technologies	1376	13-10	Planning for Wastewater Reclamation	
	Constituent Removal Technologies	1376		and Reuse	1433
	Conventional Wastewater Treatment			Planning Basis	1433
	Process Flow Diagrams for			Market Assessment	1434
	Water Reclamation	1377		Monetary Analyses	1435
	Advanced Wastewater Treatment			Other Planning Factors	1436
	Process Flow Diagrams	1379		Planning Report	1437
	Performance Expectations for Water		13–11	Epilogue on Water Reuse Issues	1438
	Reclamation Processes	1379			
	Predicting the Performance of				
	Treatment Process Combinations	1387	14	Treatment, Reuse,	
	Treatment Process Reliability	1391		and Disposal of Solids	
13-5	Storage of Reclaimed Water	1391			
	Need for Storage	1392		and Biosolids	1447
	Meeting Water Quality		14-1	Solids Sources, Characteristics,	
	Discharge Requirements	1392		and Quantities	1451
	Operation of Storage Reservoirs	1393		Sources	1451
	Problems Involved with Storage			Characteristics	1451
	of Reclaimed Water	1397		Quantities	1454
	Management Strategies for Open		14-2	Regulations for the Reuse and Disposal	
	and Enclosed Reservoirs	1399		of Solids in the United States	1460
13–6	Agricultural and Landscape Irrigation	1401		Land Application	1461
	Evaluation of Irrigation Water Quality	1401		Surface Disposal	1461
	Other Problems	1410		Pathogen and Vector	
1 <i>3-7</i>	Industrial Water Reuse	1412		Attraction Reduction	1461
	Industrial Water Use	1413		Incineration	1464
	Cooling Tower Makeup Water	1413	14-3	Solids Processing Flow Diagrams	1465

14-4	Sludge and Scum Pumping	1465		Cocomposting with Municipal	
	Pumps	1465		Solid Wastes	1551
	Headloss Determination	1475		Public Health and	
	Sludge Piping	1481		Environmental Issues	1554
14-5	Preliminary Operations	1482	14-12	Conditioning	1554
	Grinding	1482		Chemical Conditioning	1555
	Screening	1482		Other Conditioning Methods	1557
	Degritting	1484	14-13	Dewatering	1558
	Blending	1484		Centrifugation	1559
	Storage	1485		Belt-Filter Press	1563
14-6	Thickening	1488		Filter Presses	1565
	Application	1488		Sludge Drying Beds	1570
	Description and Design of Thickeners	1489		Reed Beds	1578
1 <i>4–7</i>	Introduction to Stabilization	1499		Lagoons	1578
14-8	Alkaline Stabilization	1500	14-14	Heat Drying	1579
	Chemical Reactions in	1000		Heat-Transfer Methods	1579
	Lime Stabilization	1500		Process Description	1580
	Heat Generation	1502		Product Characteristics	1584
	Application of Alkaline			Product Transport and Storage	1585
	Stabilization Processes	1502		Fire and Explosion Hazards	1585
14-9	Anaerobic Digestion	1505		Air Pollution and Odor Control	1585
17-7	Process Fundamentals	1506	14-15	Incineration	1586
	Description of Mesophilic Anaerobic	1500		Fundamental Aspects of	
	Digestion Processes	1507		Complete Combustion	1587
	Process Design for Mesophilic	100,		Multiple-Hearth Incineration	1588
	Anaerobic Digestion	1509		Fluidized-Bed Incineration	1590
	Selection of Tank Design and			Coincineration with Municipal	
	Mixing System	1516		Solid Waste	1592
	Methods for Enhancing Solids			Air-Pollution Control	1592
	Loading and Digester Performance	1522	14-16	Solids Mass Balances	1592
	Gas Production, Collection, and Use	1523		Preparation of Solids Mass Balances	1593
	Digester Heating	1525		Performance Data for Solids-	
	Thermophilic Anaerobic Digestion	1529		Processing Facilities	1593
	Two-Phased Anaerobic Digestion	1531		Impact of Return Flows and Loads	1594
14-10	Aerobic Digestion	1533	14-1 <i>7</i>	Application of Biosolids to Land	1608
	Process Description	1534		Site Evaluation and Selection	1609
	Conventional Air Aerobic Digestion	1535		U.S. EPA Regulations for Beneficial	
	Dual Digestion	1541		Use and Disposal of Biosolids	1610
	Autothermal Thermophilic Aerobic			Design Loading Rates	1613
	Digestion (ATAD)	1541		Application Methods	1617
	High-Purity Oxygen Digestion	1545		Application to Dedicated Lands	1619
14-11	Composting	1546		Landfilling	1621
	Process Microbiology	1547	14-18	Biosolids Conveyance and Storage	1621
	Process Description	1547		Conveyance Methods	1622
	Design Considerations	1550		Storage	1622

15	Issues Related to		15-6	Upgrading Wastewater Treatment-	
	Treatment-Plant			Plant Performance	1708
	Performance	1622		Process Optimization	1708
16.1		1633		Upgrading Existing Wastewater	
15-1	Need for Upgrading Treatment-Plant			Treatment Facilities	1712
	Performance	1634	1 <i>5-7</i>	Important Design Considerations	
	Meeting Current and Future Needs	1634		for New Wastewater Treatment Plants Process Design Considerations for Liquid Streams Process Design Considerations for	1721 1721
	Meeting More Stringent	1.05			
	Discharge Requirements	1635			
	Discharge Limits for Wastewater	1.00			
	Treatment Plants	1635		Solids Processing	1721
15-2	Treatment Process Reliability and			Odor Control	1723
	Selection of Design Values	1636			
	Variability in Wastewater Treatment	1636	Annen	divas	
	Selection of Process Design Parameter		Appendixes		
	to Meet Discharge Permit Limits	1640	A	Conversion Factors	1729
	Performance of Combined Processes	1647	В	Physical Properties of Selected Gases and the Composition of Air	1737
	Development of Input-Output Data	1649			
15-3	Odor Management	1650	C	Physical Properties of Water	1741
	Types of Odors	1650	D	Solubility of Dissolved Oxygen	
	Sources of Odors	1650		in Water as a Function of Salinity	
	Movement of Odors from Wastewater			and Barometric Pressure	1745
	Treatment Facilities	1654	E	MPN Tables and Their Use	1749
	Strategies for Odor Management	1654	F		
	Odor-Treatment Methods	1658		Carbonate Equilibrium	1753
	Selection and Design of		G	Moody Diagrams for the Analysis	
	Odor-Control Facilities	1668		of Flow in Pipes	1757
	Design Considerations for				
	Chemical Scrubbers	1668	Indexes		
	Design Considerations for			Name Index	1759
	Odor-Control Biofilters	1670			
15-4	Introduction to Automatic			Subject Index	1771
	Process Control	1677			
	Process Disturbances	1678			
	Control Systems for Wastewater				
	Treatment Plants	1679			
	Control Algorithms	1682			
	Process Control Diagrams	1690			
	Description of Automatic Control				
	System Elements	1693			
15-5	Energy Efficiency				
	in Wastewater Treatment	1703			
	Overview of the Use of Electricity				
	in Wastewater Treatment	1704			
	Measures for Improving				
	Energy Efficiency	1705			

15-6

15

Issues Related to