EARTH LAB Exploring the Earth Sciences

Owen / Pirie / Draper

Contents

SECTION 1

Introduction

INTRODUCTION

The Scientific Method

Organization of This Book 1
The Scientific Method 1
Special Features of the Earth Sciences 3
Apply the Scientific Method to Your Own Life 4

LAB 1

Introduction to Maps 5

Types of Maps 5
Map Legend 8
Scale 9
Global Location System: Latitude and Longitude 14
Map Grids and Orientation 17
Projections 20
U.S. Geological Survey Maps 25
Global Positioning System (GPS) 26

SECTION 2

The Solid Earth

LAB 2

Physical Properties of Minerals 29

Definition of a Mineral 29
Types of Physical Properties Shown
by Minerals 30
Determining the Properties of Minerals 35

LAB3

Rock-Forming Minerals 45

Mineral Identification and Recognition
Use of the Mineral Identification Tables
Classification of Minerals
Geologic Resources and Minerals
58

LAB4

Igneous Rocks 59

Mineralogical and Chemical Composition of 59
Textures of Igneous Rocks 60
Classification and Identification of Igneous Rocks 70

LAB5

Sedimentary Rocks 75

Formation of Sedimentary Rocks 75
Sedimentary Environments 77
Clastic Sedimentary Rocks 86
Biochemical and Chemical Sedimentary Rocks 88
Identification and Description of Sedimentary Rocks 93

LAB6

Metamorphic Rocks 99

Textures of Metamorphic Rocks 100
Composition of Metamorphic Rocks 105
Types of Metamorphism 107
Temperature and Pressure 108
Classification of Metamorphic Rocks 112

LAB 7

Rock Masses 119

Introduction to Geologic Maps and Cross Sections
Sedimentary Rock Masses 124
Igneous Rock Masses 126
Metamorphic Rock Masses 132
Structures and Deformation 135
Rocks in a Cross Section 143

LAB8

Geologic Time and Geologic History 145

Relative Age 145 Geologic History 151 Numerical Dating 155 Geologic Time Scale 167

LAB9

Earth's Structure and Plate Tectonics 169

The Structure of Earth 169
Divergent Plate Boundaries and Transform Faults 178
Convergence, Subduction, and Mountain Building 188
Geometric Fit of Continents 191

LAB 10

Earthquakes and Seismology 195

Earthquake Hazards 195
The Origin of Earthquakes 201
Seismic Waves 202
Magnitude 205
Locating an Earthquake 208

SECTION 3

Earth's Surface and the Fluid Earth

LAB 11

Topographic Maps 215

Topography and Contours 215
Topographic Profiles 217
Using and Constructing Topographic Maps 217
Air Photos Give a View of the Third Dimension 223

LAB 12

Shorelines and Oceans 229

The Edge of the Oceans 229
Shorelines 232
Ocean Currents 236
Ocean Salinity 239
Nutrients in Seawater 241
El Niño—La Niña 241

LAB 13

Groundwater and Karst Topography 251

Porosity 252
Permeability and Flow Rate 252
Water Table, Groundwater Flow, and Wells 255
Groundwater Causes Erosion by Solution 263

LAB 14

Streams and Rivers 269

Stream Gradient 269

Stream Erosion: Downward or Sideways? 277

LAB 15

Wind and the Atmosphere 289

Coriolis Effect 289
Global Winds 291
Humidity 294
Weather 296
Atmospheric Chemistry 306
Greenhouse Effect 308
Ozone Layer 312

SECTION 4

Resources

LAB 16

Geologic Maps 317

What is Shown on a Geologic Map 317
Folds on Geologic Maps 320
Faults on Geologic Maps 328
Unconformities on Geologic Maps 325
Igneous Contacts on Geologic Maps 339
Drawing a Cross Section 339
Making Geologic Maps from Field Investigations:
A Simulation 339

LAB 17

Resources 345

Fossil Fuels as Resources 345 Carbon Cycle 358 Mineral Resources 359

Glossary 371