
Geodynamics Second Edition

Donald L. Turcotte Gerald Schubert

Contents

Preface	page xi
Preface to the Second Edition	xiii
ONE. Plate Tectonics	
1–1 Introduction	1
1-2 The Lithosphere	5
1-3 Accreting Plate Boundaries	6
1-4 Subduction	9
1-5 Transform Faults	13
1-6 Hotspots and Mantle Plumes	14
1-7 Continents	17
1-8 Paleomagnetism and the Motion of the Plates	22
1-9 Triple Junctions	35
1-10 The Wilson Cycle	38
1–11 Continental Collisions	41
1-12 Volcanism and Heat Flow	46
1-13 Seismicity and the State of Stress in the Lithosphere	49
1–14 The Driving Mechanism	54
1-15 Comparative Planetology	55
1–16 The Moon	56
1–17 Mercury	58
1-18 Mars	59
1–19 Phobos and Deimos	64
1-20 Venus	65
1-21 The Galilean Satellites	67
TWO. Stress and Strain in Solids	73
2–1 Introduction	73
2-2 Body Forces and Surface Forces	73
2-3 Stress in Two Dimensions	80
2-4 Stress in Three Dimensions	83
2-5 Pressures in the Deen Interiors of Planets	84

vi **CONTENTS**

	2–6 Stress Measurement	85
	2-7 Basic Ideas about Strain	87
	2–8 Strain Measurements	94
THE	REE. Elasticity and Flexure	105
	3–1 Introduction	105
	3-2 Linear Elasticity	106
	3-3 Uniaxial Stress	106
	3-4 Uniaxial Strain	108
	3-5 Plane Stress	109
	3-6 Plane Strain	111
	3-7 Pure Shear and Simple Shear	111
	3–8 Isotropic Stress	112
	3-9 Two-Dimensional Bending or Flexure of Plates	112
	3-10 Bending of Plates under Applied Moments and Vertical Loads	116
	3-11 Buckling of a Plate under a Horizontal Load	118
	3-12 Deformation of Strata Overlying an Igneous Intrusion	119
	3-13 Application to the Earth's Lithosphere	121
	3-14 Periodic Loading	122
	3-15 Stability of the Earth's Lithosphere under an End Load	123
	3-16 Bending of the Elastic Lithosphere under the Loads	
	of Island Chains	124
	3-17 Bending of the Elastic Lithosphere at an Ocean Trench	127
	3-18 Flexure and the Structure of Sedimentary Basins	129
FOI	UR. Heat Transfer	132
	4-1 Introduction	132
	4-2 Fourier's Law of Heat Conduction	132
	4-3 Measuring the Earth's Surface Heat Flux	133
	4-4 The Earth's Surface Heat Flow	135
	4-5 Heat Generation by the Decay of Radioactive Elements	136
	4-6 One-Dimensional Steady Heat Conduction with Volumetric	
	Heat Production	138
	4-7 A Conduction Temperature Profile for the Mantle	140
	4-8 Continental Geotherms	141
	4-9 Radial Heat Conduction in a Sphere or Spherical Shell	144
	4-10 Temperatures in the Moon	145
	4-11 Steady Two- and Three-Dimensional Heat Conduction	146
	4-12 Subsurface Temperature Due to Periodic Surface Temperature	
	and Topography	147
	4-13 One-Dimensional, Time-Dependent Heat Conduction	149
	4-14 Periodic Heating of a Semi-Infinite Half-Space: Diurnal	
	and Seasonal Changes in Subsurface Temperature	150
	4-15 Instantaneous Heating or Cooling of a Semi-Infinite Half-Space	153
	4-16 Cooling of the Oceanic Lithosphere	157
	4-17 Plate Cooling Model of the Lithosphere	161
	4–18 The Stefan Problem	162

	4–19 Solidification of a Dike or Sill	166
	4–20 The Heat Conduction Equation in a Moving Medium:	
	Thermal Effects of Erosion and Sedimentation	168
	4-21 One-Dimensional, Unsteady Heat Conduction in an Infinite Region	169
	4–22 Thermal Stresses	171
	4–23 Ocean Floor Topography	174
	4–24 Changes in Sea Level	178
	4-25 Thermal and Subsidence History of Sedimentary Basins	179
	4-26 Heating or Cooling a Semi-Infinite Half-Space by a Constant	
	Surface Heat Flux	183
	4–27 Frictional Heating on Faults: Island Arc Volcanism and Melting	
	on the Surface of the Descending Slab	184
	4–28 Mantle Geotherms and Adiabats	185
	4-29 Thermal Structure of the Subducted Lithosphere	190
•	4-30 Culling Model for the Erosion and Deposition of Sediments	191
FIVE	:. Gravity	195
	5–1 Introduction	195
	5-2 Gravitational Acceleration External to the Rotationally	
	Distorted Earth	195
	5-3 Centrifugal Acceleration and the Acceleration of Gravity	200
	5-4 The Gravitational Potential and the Geoid	201
	5-5 Moments of Inertia	205
	5-6 Surface Gravity Anomalies	207
	5-7 Bouguer Gravity Formula	210
	5-8 Reductions of Gravity Data	212
	5–9 Compensation	213
	5-10 The Gravity Field of a Periodic Mass Distribution on a Surface	213
	5-11 Compensation Due to Lithospheric Flexure	214
	5-12 Isostatic Geoid Anomalies	216
	5-13 Compensation Models and Observed Geoid Anomalies	219
	5-14 Forces Required to Maintain Topography and the Geoid	223
SIX.	. Fluid Mechanics	226
	6–1 Introduction	226
	6-2 One-Dimensional Channel Flows	226
	6-3 Asthenospheric Counterflow	230
	6-4 Pipe Flow	231
	6-5 Artesian Aquifer Flows	233
	6-6 Flow Through Volcanic Pipes	234
	6-7 Conservation of Fluid in Two Dimensions	234
	6-8 Elemental Force Balance in Two Dimensions	235
	6-9 The Stream Function	237
j.	6-10 Postglacial Rebound	238
v.	6-11 Angle of Subduction	242
7 (6)4	6-12 Diapirism	244
	6_13 Folding	2/19

6-14 Stokes Flow	
6-15 Plume Heads and Tails	254
6-16 Pipe Flow with Heat Addition	259
6-17 Aquifer Model for Hot Springs	262
6-18 Thermal Convection	264
6-19 Linear Stability Analysis for the Onset of Thermal Convection	266
in a Layer of Fluid Heated from Below	
6-20 A Transient Boundary-Layer Theory for Finite-Amplitude	267
Thermal Convection	
6-21 A Steady-State Boundary-Layer Theory for Finite-Amplitude	272
Thermal Convection	
6-22 The Forces that Drive Plate Tectonics	274
6-23 Heating by Viscous Dissipation	280
6-24 Mantle Recycling and Mixing	283
	285
SEVEN. Rock Rheology	202
7–1 Introduction	292
7–2 Elasticity	292
7-3 Diffusion Creep	293
7-4 Dislocation Creep	300
7-5 Shear Flows of Fluids with Temperature- and	307
Stress-Dependent Rheologies	
7-6 Mantle Rheology	311
7-7 Rheological Effects on Mantle Convection	318
7-8 Mantle Convection and the Cooling of the Earth	323
7–9 Crustal Rheology	325
7–10 Viscoelasticity	327
7-11 Elastic-Perfectly Plastic Behavior	329
	333
EIGHT. Faulting	339
8-1 Introduction	
8-2 Classification of Faults	339
8-3 Friction on Faults	339
8-4 Anderson Theory of Faulting	341
8-5 Strength Envelope	343
8-6 Thrust Sheets and Gravity Sliding	347
8-7 Earthquakes	347
8-8 San Andreas Fault	350
8-9 North Anatolian Fault	355
8-10 Some Elastic Solutions for Strike-Slip Faulting	359
8-11 Stress Diffusion	361
8–12 Thermally Activated Creep on Faults	367
NINE. Flows in Porous Media	368
9–1 Introduction	374
9–2 Darcy's Law	374
9-3 Permeability Models	374
Transcripting 141000618	375

9-4 Flow in Confined Aquifers	376
9-5 Flow in Unconfined Aquifers	378
9-6 Geometrical Form of Volcanoes	387
9-7 Equations of Conservation of Mass, Momentum, and Energy	
for Flow in Porous Media	390
9-8 One-Dimensional Advection of Heat in a Porous Medium	391
9-9 Thermal Convection in a Porous Layer	393
9-10 Thermal Plumes in Fluid-Saturated Porous Media	396
9–11 Porous Flow Model for Magma Migration	402
9-12 Two-Phase Convection	405
TEN. Chemical Geodynamics	410
10-1 Introduction	410
10-2 Radioactivity and Geochronology	411
10-3 Geochemical Reservoirs	415
10-4 A Two-Reservoir Model with Instantaneous	
Crustal Differentiation	417
10-5 Noble Gas Systems	423
10-6 Isotope Systematics of OIB	424
APPENDIX ONE. Symbols and Units	429
APPENDIX TWO. Physical Constants and Properties	433
Answers to Selected Problems	437
Indox	441