
An Introduction to Nuclear Physics

Contents

	Preface to the second edition	ix
	Preface to the first edition	. х
	Constants of nature, conversion factors and notation	xii
	Glossary of some important symbols	xiii
1	Prologue	1
1.1	Fermions and bosons	2
1.2	The particle physicist's picture of nature	: 2
1.3	Conservation laws and symmetries: parity	3
1.4	Units	4
	Problems	5
2	Leptons and the electromagnetic and weak interactions	7
2.1	The electromagnetic interaction	· 7
2.2	The weak interaction	: 9
2.3	Mean life and half life	12
2.4	Leptons	13
2.5	The instability of the heavy leptons: muon decay	15
2.6	Parity violation in muon decay	16
:	Problems	17
. 3	Nucleons and the strong interaction	19
3.1	Properties of the proton and the neutron	19
3.2	The quark model of nucleons	21
3.3	The nucleon-nucleon interaction: the phenomenological	
	description	22
3.4	Mesons and the nucleon-nucleon interaction	26
3.5	The weak interaction: β-decay	28
3.6	More quarks	29
3.7	The Standard Model of particle physics	31
	Problems	31

	·	
4	Nuclear sizes and nuclear masses	33
4.1	Electron scattering by the nuclear charge distribution	33
4.2	Muon interactions	36
4.3		37
4.4	The masses and binding energies of nuclei in their ground	
	states	39
4.5	The semi-empirical mass formula	41
4.6	The β -stability valley	44
4.7	The masses of the β -stable nuclei	48
4.8	The energetics of α -decay and fission	50
4.9	Nuclear binding and the nucleon-nucleon potential	52
	Problems	52
5	Ground-state properties of nuclei: the shell model	56
5.1	Nuclear potential wells	56
5.2	Estimates of nucleon energies	58
5.3	Energy shells and angular momentum	60
5.4	Magic numbers	65
5.5	The magnetic dipole moment of the nucleus	66
5.6	Calculation of the magnetic dipole moment	67
5.7	The electric quadrupole moment of the nucleus	68
	Problems	72
6	Alpha decay and spontaneous fission	74
6.1	Energy release in α-decay	74
6.2	The theory of α-decay	75
6.3	Spontaneous fission	83
A	Problems	87
7	Excited states of nuclei	89
7.1	The experimental determination of excited states	89
7.2	Some general features of excited states	93
7.3	The decay of excited states: γ -decay and internal conversion	97
7.4	Partial decay rates and partial widths	99
7.5	Excited states arising from β -decay	100
	Problems	101
8	Nuclear reactions	103
8.1	The Breit-Wigner formula	103
8.2	Neutron reactions at low energies	107
8.3	Coulomb effects in nuclear reactions	109
8.4	Doppler broadening of resonance peaks	-111
	Problems	113
. 9	Power from nuclear fission	115
9.1	Induced fission	115

		Contents	vii
9.2	Neutron cross-sections for ²³⁵ U and ²³⁸ U		116
9.3	The fission process		118
9.4	The chain reaction		119
9.5	Nuclear fission reactors		121
9.6	Reactor control and delayed neutrons		122
9.7	Production and use of plutonium		124
9.8	Radioactive waste		125
9.9	The future of nuclear power		126
	Problems		127
10	Nuclear fusion		130
10.1	The Sun		130
10.2	Cross-sections for hydrogen burning		132
10.3			135
10.4	Other solar reactions		139
10.5	Solar neutrinos		140
10.6	Fusion reactors		143
10.7	Muon-catalysed fusion		146
	Problems		148
. 11	Nucleosynthesis in stars		151
11.1	Stellar evolution		151
11.2	From helium to silicon		155
11.3	Silicon burning		156
11.4	Supernovae		157
11.5	Nucleosynthesis of heavy elements		160
	Problems		161
12	Beta decay and gamma decay		163
12.1	What must a theory of β -decay explain?		163
12.2	The Fermi theory of β -decay		166
12.3	Electron and positron energy spectra		1 6 8
12.4	Electron capture		171
12.5	The Fermi and Gamow-Teller interactions		173
12.6	The constants $V_{\rm ud}$ and $g_{\rm A}$		177
12.7	Electron polarisation		178
12.8	Theory of y-decay		179
12.9	Internal conversion		184
.,	Problems		185
13	Neutrinos		186
13.1	Neutrino cross-sections		186
13.2	The mass of the electron neutrino		188
13.3	Neutrino mixing and neutrino oscillations		189

***	A
vili	Contents

1	13.4	Solar neutrinos	193
	13.5		195
		Problems	196
:	14	The passage of energetic particles through matter	199
r	14.1	Charged particles	199
	14.2	Multiple scattering of charged particles	206
2	14.3	Energetic photons	207
.4	14.4	The relative penetrating power of energetic particles	211
		Problems	212
	15	Radiation and life	214
	15.1	Ionising radiation and biological damage	214
	15.2	Becquerels (and curies)	215
	15.3	Grays and sieverts (and rads and rems)	216
1	15.4	Natural levels of radiation	217
	15.5	Man-made sources of radiation	218
	15.6	Risk assessment	219
		Problems	220
		Appendix A: Cross-sections	222
	A .1	Neutron and photon cross-sections	222
	A.2	Differential cross-sections	224
	A.3	Reaction rates	225
	A.4	Charged particle cross-sections: Rutherford scattering	226
		Appendix B: Density of states	227
		Problems	230
		Appendix C: Angular momentum	230
	C .1	Orbital angular momentum	230
	C .2	Intrinsic angular momentum	232
	C.3	Addition of angular momenta	233
	C.4	The deuteron	234
		Problems	235
		Appendix D: Unstable states and resonances	235
	D .1	•	236
	D.2	The formation of excited states in scattering: resonances	
		and the Breit-Wigner formula	241
		Problems	244
		Further reading	245
		Answers to problems	246
		Index	267