An Introduction to Quantum Theory

F. S. Levin

CAMBRIDGE

Contents

Preface		page ix	
PA	RT I. INTRODUCTORY	1	
	napter 1 The Need for a Non-Classical Description of Microscopic Phenome		
	Photons	4	
	2 Quantization of Energy and Angular Momentum	12	
1.3	The Wave Nature of Matter	19	
	Exercises	23	
Ch	napter 2 Classical Concepts and Quantal Inequivalences	27	
2.1	Particles	27	
2.2	Coordinate Systems: Positions, Velocities, Momenta	28	
2.3	Dynamical Equations, Generalized Coordinates and Conserved Quantities	30	
2.4	Potentials and Limits of Motion	34	
2.5	States of a System	35	
2.6	Measurements and Uncertainty	37	
	Exercises	40	
Ch	apter 3 Introducing Quantum Mechanics: A Comparison of the Classical		
	Stretched String and the Quantal Box	46	
3.1	The Uniform Stretched String	46	
3.2	Quantum Dynamics	57	
3.3	The Particle in a Quantal Box	63	
3,4	*The Concept of Hermiticity	70	
	Exercises	77	
Ch	apter 4 Mathematical Background	84	
	Vectors and Matrices in Three Dimensions	85	
4.2	N Dimensions, Hilbert Space, and Dirac Notation	91	
	Operators	101	
	The Position Operator: Delta Functions and Locality	108	
	Functions of Operators	117	
	Exercises	122	

vi Contents

PAF	PART II. THE CENTRAL CONCEPTS		
Cha	apter 5 The Postulates of Quantum Mechanics	129	
	Observables	129	
	States, Wave Functions, and Probabilities	132	
	Measurements/Connection with Experimental Data	138	
	The Coordinate Representation for Observables	146	
	The Fundamental Dynamical Equation	156	
	Eigenstate Expansions	161	
	Exercises	165	
Cha	apter 6 Applications of the Postulates: Bound States in One Dimension	174	
	The Quantum Box, Revisited	175	
6.2	The Linear Harmonic Oscillator	184	
6.3	General Remarks on Non-Confining Potentials	207	
6.4	The Half-Space Square Well	213	
6.5	The Square Well	218	
6.6	The Delfa-Function Potential	220	
	Exercises	222	
Cha	apter 7 Applications of the Postulates: Continuum States in One Dimension	230	
7.1	Wave-Packet Description of Scattering	230	
7.2	The Equation of Continuity and the Plane-Wave Limit for Scattering	245	
7.3	Plane-Wave Scattering: Attractive Potentials	255	
7.4	Plane-Wave Scattering: Potential Barriers and Tunneling Phenomena	266	
	Exercises	275	
Cha	apter 8 *Quantal/Classical Connections	281	
8.1	Some Temporal Aspects of the Theory	281	
8.2	Path-Integral Formulation of Quantum Mechanics	289	
8.3	The Classical Limit	295	
	Exercises	303	
Cha	apter 9 Commuting Operators, Quantum Numbers, Symmetry Properties	307	
9.1	The Heisenberg Uncertainty Principle	308	
	Quantal Constants of the Motion	315	
	Complete Sets of Commuting Operators	317	
	General Remarks on Symmetries and Symmetry Operators	319	
	Reflections	321	
	Translations	332	
9.7	Rotations	344	
	Francisas	356	

Contents	vi
Contents	V

PAR'	PART III. SYSTEMS WITH FEW DEGREES OF FREEDOM		
Cha	pter 10 Orbital Angular Momentum	365	
-	The Orbital Angular Momentum Operator	365	
	The Orbital Angular Momentum Eigenvalue Problem	372	
	Spherical-Harmonics Expansion of Plane Waves	382	
	Orbital Angular Momentum Uncertainty Relations	387	
	Exercises	392	
Chaj	pter 11 Two-Particle Systems, Potential-Well Bound-State Problems	396	
11.1	Some Features of the Two-Particle System	396	
11.2	Reduction of the \hat{H}_{12} Two-Body Problem to an Effective One-Body Problem	400	
11.3	Some Properties of the Solutions in Three Dimensions	409	
11.4	Two Quantal Boxes	412	
11.5	The Symmetric Three-Dimensional Square Well	421	
11.6	The $1/r$ Potential	427	
11.7	*The Symmetric Two-Dimensional Oscillator	440	
	Exercises	444	
Chaj	pter 12 Electromagnetic Fields	451	
12.1	Charged Particle in External Electromagnetic Fields	452	
12.2	Quantal Particle in a Uniform Magnetic Field	454	
	Quantal Particle in a Uniform Electric Field	462	
12.4	Quantum-Theoretic Aspects of $\hat{H}^{(A)}(\mathbf{r}, t)$	465	
	Gauge Invariance	469	
	Gauge Transformations: The Spatially Uniform Electric Field	473	
12.7	*The Aharonov-Bohm Effect	476	
	Exercises	481	
Chaj	pter 13 Intrinsic Spin, Two-State Systems	487	
	The Stern-Gerlach Experiment and its Interpretation	487	
13.2	Spin $\frac{1}{2}$: Operators, States, Properties	491	
13.3	Magnetic-Field Phenomena	499	
13.4	Other Two-State Systems	510	
	Exercises	511	
Cha	pter 14 Generalized Angular Momentum and the Coupling of Angular		
	Momenta	517	
	Generalized Angular Momentum	517	
	Rotations and Spin $\frac{1}{2}$	525	
	The Coupling of Angular Momenta	529	
	$\hat{\mathbf{J}}_1 \cdot \hat{\mathbf{J}}_2$ Interactions	540	
14.5	*Conceptual/Interpretational Controversies, Bell's Inequality	544	
	Exercises	551	

viii Contents

Chapter 15 Three-Dimensional Continuum States/Scattering	555
15.1 Wave-Packet Analysis	556
15.2 Angular Distributions and the Plane-Wave Limit	563
15.3 The Lippmann-Schwinger Equation and the Scattering Amplitude	566
15.4 Spherical Symmetry, Partial Waves, Phase Shifts	571
15.5 Some Phase-Shift Calculations	580
15.6 A Weak-Potential/High-Energy Approximation	584
15.7 *Spin-½ Projectiles	588
Exercises	592
PART IV. COMPLEX SYSTEMS	597
Chapter 16 Time-Dependent Approximation Methods	599
16.1 Time-Dependent Perturbation Theory	599
16.2 Electromagnetic Transitions Between Bound States	612
16.3 *Sudden and Adiabatic Approximations, Geometric Phases	625
16.4 *Exponential Decay and the Time-Energy Uncertainty Relation	632
Exercises	639
Chapter 17 Time-Independent Approximation Methods	644
17.1 Rayleigh-Schrödinger Perturbation Theory: The Non-Degenerate Case	644
17.2 Fine Structure and Hyperfine Structure in the Spectrum of Hydrogen	652
17.3 Rayleigh-Schrödinger Perturbation Theory: The Degenerate Case	659
17.4 The Variational Method for Bound States	669
17.5 *The WKB Approximation	680
Exercises	684
Chapter 18 Many Degrees of Freedom: Atoms and Molecules	689
18.1 Identical-Particle Symmetries	690
18.2 Two-Electron Atoms	700
18.3 The Hartree-Fock Approximation for Atoms	713
18.4 The Atomic Central-Field Approximation and the Periodic Table of the	
Elements	719
18.5 Elements of Molecular Structure	732
Exercises	750
Appendix A Elements of Probability Theory	756
Appendix B Fourier Series and Integrals	763
Appendix C Solution of Legendre's Equation	771
Appendix D Fundamental and Derived Quantities: Conversion Factors	775
References	776
Index	783