# INTERNATIONAL EDITION

# Principles of BIOCHEMISTRY

Third Edition



## **Contents**

# PART ONE Introduction

2.3

2.4

| 1                                            | Introduction to Biochemistry 3                       |  |  |
|----------------------------------------------|------------------------------------------------------|--|--|
|                                              | •                                                    |  |  |
| 1.1                                          | Biochemistry Is a Modern Science 4                   |  |  |
| 1.2                                          | The Chemical Elements of Life 5                      |  |  |
| 1.3                                          | Many Important Biomolecules Are Polymers 8           |  |  |
|                                              | A. Proteins 8                                        |  |  |
|                                              | B. Polysaccharides 9                                 |  |  |
|                                              | C. Nucleic Acids 10                                  |  |  |
|                                              | D. Lipids and Membranes 12                           |  |  |
| 1.4                                          | The Energetics of Life 14                            |  |  |
| 1.5                                          | Biochemistry and Evolution 15                        |  |  |
| 1.6                                          | The Cell Is the Basic Unit of Life 15                |  |  |
| 1.7                                          | Prokaryotic Cells: Structural Features 16            |  |  |
| 1.8 Eukaryotic Cells: Structural Features 17 |                                                      |  |  |
|                                              | A. The Nucleus 17                                    |  |  |
|                                              | B. The Endoplasmic Reticulum and Golgi Apparatus 19  |  |  |
|                                              | C. Mitochondria and Chloroplasts 19                  |  |  |
|                                              | D. Specialized Vesicles 20                           |  |  |
|                                              | E. The Cytoskeleton 21                               |  |  |
| 1.9                                          | A Picture of the Living Cell 21                      |  |  |
| 1.10                                         | Biochemistry Is Multidisciplinary 23                 |  |  |
|                                              | Appendix: The Special Terminology of Biochemistry 23 |  |  |
|                                              | Selected Readings 24                                 |  |  |
|                                              | 2.                                                   |  |  |
| 2                                            | Water 25                                             |  |  |
| 2.1                                          | The Water Molecule Is Polar 26                       |  |  |
| 2.2                                          | Hydrogen Bonding in Water 27                         |  |  |

Ionic and Polar Substances Dissolve in Water 28

Nonpolar Substances Are Insoluble in Water 29

| 2.5 | Noncovalent | Interactions | in Biomolecules | 31 |
|-----|-------------|--------------|-----------------|----|
|-----|-------------|--------------|-----------------|----|

- A. Charge-Charge Interactions 31
- B. Hydrogen Bonds 31
- C. Van der Waals Forces 32
- D. Hydrophobic Interactions 33
- 2.6 Water Is Nucleophilic 33
- 2.7 Ionization of Water 35
- 2.8 The pH Scale 36
- 2.9 Acid Dissociation Constants of Weak Acids 37
- 2.10 Buffered Solutions Resist Changes in pH 40

Summary 43

Problems 43

Selected Readings 45

#### PART TWO

#### Structure and Function of Biomolecules

# 3 Amino Acids and the Primary Structures of Proteins 51

- 3.1 General Structure of Amino Acids 52
  - thus 3.7 An Alternative Nomenclature 54
- 3.2 Structures of the 20 Common Amino Acids 55
  - A. Aliphatic R Groups 55
  - B. Aromatic R Groups 56
  - C. Sulfur-Containing R Groups 57
  - D. Side Chains with Alcohol Groups 57
  - E. Basic R Groups 58
  - F. Acidic R Groups and Their Amide Derivatives 58
  - G. The Hydrophobicity of Amino Acid Side Chains 58
- 3.3 Other Amino Acids and Amino Acid Derivatives 59
- 3.4 Ionization of Amino Acids 60
- 3.5 Peptide Bonds Link Amino Acids in Proteins 64
- 3.6 Protein Purification Techniques 66
- 3.7 Amino Acid Composition of Proteins 69
- 3.8 Determining the Sequence of Amino Acid Residues 70
- 3.9 Protein Sequencing Strategies 73
- 3.10 Comparisons of the Primary Structures of Proteins Reveal Evolutionary Relationships 77

Summary 78

Problems 79

Selected Readings 80

# 4 Proteins: Three-Dimensional Structure and Function 81

- 4.1 There Are Four Levels of Protein Structure 83
  - Methods for Determining Protein Structure 84
- The Conformation of the Peptide Group 86
- 4.4 The a Helix 89







- 4.5 β Strands and β Sheets 92
- 4.6 Loops and Turns 94
- 4.7 Tertiary Structure of Proteins 96
  - A. Supersecondary Structures 96
  - B. Domains 97
  - C. Domain Structure and Function 1
- 4.8 Quaternary Structure 102
- 4.9 Protein Denaturation and Renaturation 104
- 4.10 Protein Folding and Stability 107
  - A. The Hydrophobic Effect 107
    - B. Hydrogen Bonding 109
    - C. Van der Waals Interactions and Charge-Charge Interactions 110
    - D. Protein Folding Is Assisted by Chaperones 110
- 4.11 Collagen, a Fibrous Protein 112
- 4.12 Structures of Myoglobin and Hemoglobin 114
- 4.13 Oxygen Binding to Myoglobin and Hemoglobin 116
  - A. Oxygen Binds Reversibly to Heme 116
  - B. Oxygen-Binding Curves of Myoglobin and Hemoglobin 117
  - C. Hemogiobin Is an Allosteric Protein 119
- 4.14 Antibodies Bind Specific Antigens 121

Summary 124

Problems 125

Selected Readings 127

#### 5 Properties of Enzymes 130

- 5.1 The Six Classes of Enzymes 131
- 5.2 Kinetic Experiments Reveal Enzyme Properties 133
  - A. Chemical Kinetics 133
  - B. Enzyme Kinetics 134
- 5.3 The Michaelis-Menten Equation 135
  - A. Derivation of the Michaelis-Menten Equation 137
  - B. The Meanings of  $K_w = 138$
- 5.4 Kinetic Constants Indicate Enzyme Activity and Specificity 139
- 5.5 Measurement of  $K_{\rm m}$  and  $V_{\rm max}$  140
- 5.6 Kinetics of Multisubstrate Reactions 14:
- 5.7 Reversible Enzyme Inhibition 142
  - A. Competitive Inhibition 143
  - B. Uncompetitive Inhibition 145
  - C. Noncompetitive Inhibition 146
  - D. Uses of Enzyme Inhibition 146
  - Irreversible Enzyme Inhibition 147
- 5.9 Site-Directed Mutagenesis Modifies Enzymes 148
- 5.10 Regulation of Enzyme Activity 148

5.8

- A. Phosphofructokinase Is an Allosteric Enzyme 149
- B. General Properties of Allosteric Enzymes 150
- C. Two Theories of Allosteric Regulation 152
- D. Regulation by Covalent Modification 154



XX

| <b>5.1</b> 1 | Multienzyme Complexes and Multifunctional Enzymes | 155 |
|--------------|---------------------------------------------------|-----|
|              | 0                                                 |     |

Summary 156 **Problems** 156

Selected Readings 159

#### 6 Mechanisms of Enzymes

- 6.1 The Terminology of Mechanistic Chemistry 162
- 6.2 Catalysts Stabilize Transition States 164,
- 6.3 Chemical Modes of Enzymatic Catalysis 166
  - A. Polar Amino Acid Residues in Active Sites 166
  - B. Acid-Base Catalysis 167
  - C. Covalent Catalysis 168
  - D. pH Affects Enzymatic Rates 169
- 6.4 Diffusion-Controlled Reactions
  - A. Triose Phosphate Isomerase 171
  - B. Superoxide Dismutase 173
- Binding Modes of Enzymatic Catalysis 174 6.5
  - A. The Proximity Effect 175
  - B. Weak Binding of Substrates to Enzymes 177
  - C. Transition-State Stabilization 178
- 6.6 Induced Fit 180
- 6.7 Lysozyme Binds an Ionic Intermediate Tightly 182

Box 6 / Proposed Transition State for a Bimolecular Reaction 185

- 6.8 Properties of Serine Proteases 185
  - A. Zymogens Are Inactive Enzyme Precursors 186
  - B. Substrate Specificity of Serine Proteases 187
  - C. Serine Proteases Use Both the Chemical and the Binding Modes of Catalysis 188

Summary 192

Problems 193

Selected Readings 195

#### Coenzymes and Vitamins 197

- 7.1 Many Enzymes Require Inorganic Cations 198
- 7.2 Coenzyme Classification 199
  - A. Metabolite Coenzymes 199

Bex 7 / Nucleosides and Nucleotides 200

- B. Vitamin-Derived Coenzymes and Nutrition 202
- Box 7.2 Vitamin C: A Vitamin but Not a Coenzyme 202
- NAD® and NADP® 203 7.3

Box 7.3 NAD Binding to Dehydrogenases 206

7.4 FAD and FMN 207

> Box 3.4 An FAD-Requiring Hydroxylase That Has a Unique Test for Its Proper Substrate 208

- 7.5 Coenzyme A 209
- 7.6 Thiamine Pyrophosphate 211
- 7.7 Pyridoxal Phosphate 212
- 7.8 Biotin 215









|     |                  | ~   |
|-----|------------------|-----|
| 7.9 | Tetrahydrofolate | 216 |

- 7.10 Cobalamin 218
- 7.11 Lipoamide 219
- 7.12 Lipid Vitamins 220
  - A. Vitamin A 220
  - B. Vitamin D 221
  - C. Vitamin E 221
  - D. Vitamin K 222
- 7.13 Ubiquinone 222
- 7.14 Protein Coenzymes 223
- 7.15 Cytochromes 224

Summary 226

Problems 227

Selected Readings 230

## 8 Carbohydrates 231

- 8.1 Most Monosaccharides Are Chiral Compounds 232
- 8.2 Cyclization of Aldoses and Ketoses 236
- 8.3 Conformations of Monosaccharides 238
- 8.4 Derivatives of Monosaccharides 240
  - A. Sugar Phosphates 240
  - B. Deoxy Sugars 240
  - C. Amino Sugars 240
  - D. Sugar Aicohols 242
  - E. Sugar Acids 242
  - F. Ascorbic Acid 243
- 8.5 Disaccharides and Other Glycosides 243
  - A. Structures of Disaccharides 243
  - B. Reducing and Nonreducing Sugars 245
  - C. Nucleosides and Other Glycosides 245
  - 1600 A.7 Nodulation Factors Are Lipo-oligosaccharides 246
- 8.6 Polysaccharides 246
  - A. Starch and Glycogen 247
  - B. Cellulose and Chitin 249
- 8.7 Glycoconjugates 251
  - A. Proteoglycans, 251
  - Decorin and Collagen 253
  - B. Peptidoglycans 253
  - C. Glycoproteins 254

Summary 258

Problems 259

Selected Readings 261

#### 9 Lipids and Membranes 264

- 9.1 Structural and Functional Diversity of Lipids 264
- 9.2 Fatty Acids 265
  - 268 Trans Fatty Acids and Margarine 268
- 9.3 Triacylglycerols 269

| 9.4 | Glycerophospholipids | 270 |
|-----|----------------------|-----|
|     |                      |     |

- 9.5 Sphingolipids 272
- 9.6 Steroids 274
- 9.7 Other Biologically Important Lipids 276
  Biological Nonaqueous Techniques Must Be Used to Study Lipids 278
- 9.8 Biological Membranes Are Composed of Lipid Bilayers and Proteins 279
  - A. Lipid Bilayers 280
  - B. Fluid Mosaic Model of Biological Membranes 281
- 9.9 Lipid Bilayers and Membranes Are Dynamic Structures 282
- 9.10 Three Classes of Membrane Proteins 285
- 9.11 Membrane Transport 287
  - A. Pores and Channels 288
  - B. Passive Transport 289
  - C. Active Transport 290
  - D. Endocytosis and Exocytosis 291
  - Ben 9.3 The Hot Spice of Chili Peppers 292
- 9.12 Transduction of Extracellular Signals 293
  - A. G Proteins Are Signal Transducers 294
  - B. The Adenylyl Cyclase Signaling Pathway 295
  - C. The Inositol-Phospholipid Signaling Pathway 297

Box 9.4 Bacterial Toxins and G Proteins 298

D. Receptor Tyrosine Kinases 300

Summary 301

Problems 302

Selected Readings 303

# PART THREE Metabolism and Bioenergetics

## 10 Introduction to Metabolism 309

- 10.1 Metabolism Is the Sum of Cellular Reactions 309
  - A. Metabolic Pathways Are Sequences of Reactions 311
  - B. Metabolism Proceeds by Discrete Steps 312
- 10.2 Metabolic Pathways Are Regulated 313
- 10.3 Major Pathways in Cells 315
- 10.4 Compartmentation and Interorgan Metabolism 317
- 10.5 Thermodynamics and Metabolism 318

Box 10 / Metabolic Pathways Are in a Steady State 319

- A. Free-Energy Change 319
- B. Equilibrium Constants and Standard Free-Energy Changes 320
- C. Actual Free-Energy Change, Not Standard Free-Energy Change,
   Determines the Spontaneity of Cellular Reactions 321
- 10.6 The Free Energy of ATP 322
- 10.7 The Metabolic Roles of ATP 326
  - A. Phosphoryl-Group Transfer 327
  - B. Production of ATP by Phosphoryl-Group Transfer 327
  - C. Nucleotidyl-Group Transfer 328
- 10.8 Thioesters Have High Free Energies of Hydrolysis 329





6CO, + 6H,O

Glucose  $+ 6O_2$ 



- 10.9 Reduced Coenzymes Conserve Energy from Biological Oxidations 330
   A. Free-Energy Change Is Related to Reduction Potential 331
  - B. Electron Transfer from NADH Provides Free Energy 333

150x 10.2 NAD® and NADH Differ in Their Ultraviolet Absorption Spectra 33

10.10 Experimental Methods for Studying Metabolism 335

Summary 336

Problems 336

Selected Readings 337

## 11 Glycolysis 340

11.1 Glycolysis Is a Ubiquitous Pathway 341

Box 11.1 Elucidation of the Glycolytic Pathway 344

11.2 Glycolysis Has 10 Enzyme-Catalyzed Steps 345

Box 11.2 Arsenate Poisoning 351

- 11.3 The Fate of Pyruvate 354
  - A. Metabolism of Pyruvate to Ethanol 355
  - B. Reduction of Pyruvate to Lactate 355
- 11.4 Free-Energy Changes in Glycolysis 356
- 11.5 Regulation of Glycolysis 357
  - A. Regulation of Hexose Transporters 357
  - B. Regulation of Hexokinase 359

Box 11.3 Glucose 6-Phosphate Has a Pivotal Metabolic Role in Liver 359

- C. Regulation of Phosphofructokinase-1 360
- D. Regulation of Pyruvate Kinase 361
- E. The Pasteur Effect 363
- 11.6 Other Sugars Can Enter Glycolysis 363
  - A. Fructose Is Converted to Glyceraldehyde 3-Phosphate 363
  - B. Galactose Is Converted to Glucose 1-Phosphate 364
  - C. Mannose Is Converted to Fructose 6-Phosphate 365
- 11.7 Formation of 2,3-Bisphosphoglycerate in Red Blood Cells 365

Summary 366

Problems 367

Selected Readings 368

## **12** The Citric Acid Cycle 372

- 12.1 Entry of Pyruvate into the Mitochondrion 373
- 12.2 Conversion of Pyruvate to Acetyl CoA 373
- 12.3 The Citric Acid Cycle Oxidizes Acetyl CoA 377
- 12.4 The Citric Acid Cycle Can Be a Multistep Catalyst 379

  \*\*Rev. 12 / Three-Point Attachment of Prochiral Substrates to Enzymes 383
- 12.5 Reduced Coenzymes Fuel the Production of ATP 387
- 12.6 Regulation of the Citric Acid Cycle 388
- 12.7 Entry and Exit of Metabolites 391
- 12.8 The Glyoxylate Cycle 393

Summary 396

Problems 397

Selected Readings 398

# 13 Additional Pathways in Carbohydrate Metabolism 399

- 13.1 Glycogen Degradation 400
  - A. Glycogen Phosphorylase 400
  - B. Metabolism of Glucose 1-Phosphate 402
- 13.2 Glycogen Synthesis 402
  - ion 13. Glycogen Storage Diseases 403
- 13.3 Regulation of Glycogen Metabolism 404
  - A. Hormones Regulate Glycogen Metabolism 404
  - B. Reciprocal Regulation of Glycogen Phosphorylase and Glycogen Synthase 405
  - C. Intracellular Regulation of Glycogen Metabolism Involves Interconvertible Enzymes 406
- 13.4 Gluconeogenesis 408
- 13.5 Precursors for Gluconeogenesis 412
  - A. Lactate 412
  - B. Amino Acids 412
  - C. Glycerol 413
  - D. Propionate and Lactate 413
- 13.6 Subcellular Locations of Gluconeogenic Enzymes 414
- 13.7 Regulation of Gluconeogenesis 415
  - Box 13.2 Glucose Is Sometimes Converted to Sorbitol 417
- 13.8 The Pentose Phosphate Pathway 417
- 13.9 Interconversions Catalyzed by Transketolase and Transaldolase 421
- 13.10 Maintenance of Glucose Levels in Mammals 424

Summary 426

Problems 427

Selected Readings 428

# 14 Electron Transport and Oxidative Phosphorylation 429

- 14.1 Superoxide Anions 430
- 14.2 Cytochrome P450 431
- 14.3 Hydrogenase and Fumarate Reductase 431
- 14.4 Oxidative Phosphorylation in Mitochondria 432
- 14.5 The Mitochondrion 434
- 14.6 The Chemiosmotic Theory 435

Box 14 / New Lipid Vesicles, or Liposomes 437

- 14.7 The Protonmotive Force 438
- 14.8 Overview of Electron Transport 440
  - A. Complexes I Through IV 440
  - B. Cofactors in Electron Transport 443
- 14.9 Complex I 443
- 14.10 Complex II 444
- 14.11 Complex III 445
- 14.12 Complex IV 447
- 14.13 Complex V: ATP Synthase 449







| 14 14 | Active Tr  | anencet of ATP | ADP and P. | Across the Mitochone  | Irial Membrane |
|-------|------------|----------------|------------|-----------------------|----------------|
| 14.14 | MULIOUS IN | anaoni oi Air  | . А.И. Шиг | ACIONS THE MITTOUTION | ины менинане   |

452

14.15 The P/O Ratio 452

him 14.2 Are Proton Leaks Functional? 453

- 14.16 Aerobic Oxidation of Cytosolic NADH 453
- 14.17 Regulation of Oxidative Phosphorylation 456

Summary 456

Problems 457

Selected Readings 458

#### 15 **Photosynthesis**

- 15.1 Photosynthesis Consists of Two Major Processes 463
- 15.2 The Chloroplast 463
- 15.3 Chlorophyll and Other Pigments Capture Light 464
  - A. Light-Capturing Pigments 465
  - B. Photosystems 467
- 15.4 Electron Transport in Photosynthesis 467
  - A. Electron Transport from PSII through Cytochrome bf 470
  - B. PSI and Beyond 471
- 15.5 Photophosphorylation and Cyclic Electron Flow 473
- 15.6 The Dark Reactions 474
- 15.7 Ribulose 1,5-Bisphosphate Carboxylase-Oxygenase 474
- 15.8 The RPP Cycle 477
- 15.9 Oxygenation of Ribulose 1,5-Bisphosphate 479
- 15.10 Additional Carbon-Fixing Pathways 480
  - A. The C<sub>4</sub> Pathway Concentrates CO<sub>2</sub> 480
  - B. Nocturnal CO2 Fixation 480
- 15.11 Synthesis of Sucrose and Starch from RPP Metabolites 482

Summary 485

Problems 485

Selected Readings 487

## 16 Lipid Metabolism 490

- 16.1 Absorption and Mobilization of Fatty Acids 490
  - A. Absorption of Dietary Lipids 491
  - B. Lipoproteins 492

Ben 16 / Our, High-Fat Diets 492

- C. Storage and Mobilization of Fatty Acids 495
- 16.2 Fatty Acid Oxidation 496
  - A. Activation of Fatty Acids 496
  - B. Transport of Fatty Acy! CoA into Mitochondria 496
  - C. The Reactions of β-Oxidation 497
  - D. ATP Generation from Fatty Acid Oxidation 499
- 16.3 β-Oxidation of Odd-Chain and Unsaturated Fatty Acids 499
- 16.4 Ketone Bodies Are Fuel Molecules 502
  - A. Ketone Bodies Are Synthesized in the Liver 502
  - B. Ketone Bodies Are Oxidized in Mitochondria 503

Box 10.1 Altered Carbohydrate and Lipid Metabolism in Diabetes 504

| 16.5 | Fatty | Acid | Synthesis | 505  |
|------|-------|------|-----------|------|
| IO.J | rauv  | ACIU | Synthesis | こりいこ |

- A. Transport of Acetyl CoA to the Cytosol 506
- B. Carboxylation of Acetyl CoA 507
- C. The Reactions of Fatty Acid Synthesis 507
- 16.6 Fatty Acid Elongation and Desaturation 511
- 16.7 Regulation of Fatty Acid Oxidation 512
- 16.8 Synthesis of Eicosanoids 513
- Synthesis of Triacylglycerols and Glycerophospholipids 514 16.9
  - 34 Search for a Replacement for Aspirin 515
- 16.10 Synthesis of Ether Lipids 518
- 16.11 Synthesis of Sphingolipids 518
  - 11 14 J Lysosomal Storage Diseases 521
- 16.12 Synthesis of Cholesterol 522
  - A. Stage 1: Acetyl CoA to Isopentenyl Pyrophosphate 522
  - B. Stage 2: Isopentenyl Pyrophosphate to Squalene 523
  - C. Stage 3: Squalene to Cholesterol 525
  - D. Other Products of Cholesterol Metabolism. 525
- 16.13 Lipids Are Made at a Variety of Sites 526

Bus 16.5 Acetyl CoA Is a Major Metabolite in Liver 526

Summary 527

Problems 528

Selected Readings 529

## 17 Amino Acid Metabolism

- 17.1 The Nitrogen Cycle and Nitrogen Fixation 531
- 17.2 Assimilation of Ammonia 533
  - A. Ammonia Is Incorporated into Glutamate 533
  - B. Glutamine Is a Nitrogen Carrier 534
  - C. Regulation of Glutamine Synthetase in E. coli 535
  - Ben 17.1 How Some Enzymes Transfer Ammonia from Glutamine 535
- 17.3 Transamination Reactions 537
- 17.4 Synthesis of Nonessential Amino Acids 539
  - A. Alanine, Asparagine, Aspartate, Glutamate, and Glutamine 539
  - B. Serine, Glycine, and Cysteine 540
  - C. Proline and Arginine 542
  - D. Tyrosine 542
  - 180 12.2 Phenylketonuria, a Defect in Tyrosine Formation 543
- 17.5 Synthesis of Essential Amino Acids 544
  - A. Lysine, Methionine, Threonine, and the Branched-Chain Amino Acids 544
  - B. Histidine 545
    - C. Aromatic Amino Acids 546
- 17.6 Protein Turnover 549
- 17.7 Apoptosis-Programmed Cell Death 549
- 17.8 Amino Acid Catabolism 550
- 17.9 The Urea Cycle Converts Ammonia into Urea 550
  - A. The Reactions of the Urea Cycle 552
  - \*Box 15.2 The Liver Is Organized for Removing Toxic Ammonia 553
  - B. Ancillary Reactions of the Urea Cycle 554









- 17.10 Catabolism of the Carbon Chains of Amino Acids 555
  - A. Alanine, Asparagine, Aspartate, Glutamate, and Glutamine 556
  - B. Arginine, Histidine, and Proline 556
  - C. Glycine and Serine 557
  - D. Threonine 558
  - E. The Branched-Chain Amino Acids 55
  - F. Methionine 560
  - G. Cysteine 561
  - H. Phenylalanine, Tryptophan, and Tyrosine 561
  - I. Lysine 562

Diseases of Amino Acid Metabolism 562

- 17.11 Renal Glutamine Metabolism Produces Bicarbonate 563
- 17.12 Synthesis of Nitric Oxide from Arginine 564

Summary 565

Problems 565

Selected Readings 567

## 18 Nucleotide Metabolism 568

- 18.1 Synthesis of Purine Nucleotides 569
- 18.2 Other Purine Nucleotides Are Synthesized from IMP 572
- 18.3 Synthesis of Pyrimidine Nucleotides 574
  - A. The Pathway for De Novo Pyrimidine Synthesis 574
  - B. Regulation of De Novo Pyrimidine Synthesis 576
- 18.4 CTP Is Synthesized from UMP 578
- 18.5 Reduction of Ribonucleotides to Deoxyribonucleotides 579
- 18.6 Methylation of dUMP Produces dTMP 580

Box 13 Free Radicals in the Reduction of Ribonucleotides 581

- 18.7 Salvage of Purines and Pyrimidines 584
- 18.8 Purine Catabolism 586

Bus 18.1 Adenosine Has Hormone and Neurotransmitter Properties 587

- 18.9 The Purine Nucleotide Cycle in Muscle 589
- 18.10 Pyrimidine Catabolism 591

Summary 591

Problems 592

Selected Readings 593

# PART FOUR Biological Information Flow

# **19** Nucleic Acids 599

- 9.1 Nucleotides Are the Building Blocks of Nucleic Acids 600
  - A. Ribose and Deoxyribose 600
  - B. Purines and Pyrimidines 601
  - C. Nucleosides 602
  - D. Nucleotides 604

| 19.2 | DNA | Is | Double-Stranded | 606 |
|------|-----|----|-----------------|-----|
|      |     |    |                 |     |

- A. Nucleotides Are Joined by 3'-5' Phosphodiester Linkages 607
- B. Two Antiparallel Strands Form a Double Helix 609
- C. Weak Forces Stabilize the Double Helix 610
- D. Conformations of Double-Stranded DNA 613
- 19.3 DNA Can Be Supercoiled 614
- 19.4 Cells Contain Several Kinds of RNA 615
- 19.5 DNA Is Packaged in Chromatin in Eukaryotic Cells 616
  - A. Nucleosomes 617

Histones Can Be Acetylated and Deacetylated 619

- B. Higher Levels of Chromatin Structure 619
- C. Bacterial DNA Packaging 620
- 19.6 Nucleases and Hydrolysis of Nucleic Acids 621
  - A. Alkaline Hydrolysis of RNA 621
  - B. Ribonuclease-Catalyzed Hydrolysis of RNA 623
  - C. Restriction Endonucleases 623
  - D. EcoRI Binds Tightly to DNA 626
- 19.7 Uses of Restriction Endonucleases 627

Summary 629

Problems 629

Selected Readings 631

## **20** DNA Replication, Repair, and Recombination

- 20.1 Chromosomal DNA Replication Is Bidirectional 633
- 20.2 DNA Polymerase 635
  - A. Chain Elongation Is a Nucleotidyl-Group-Transfer Reaction 637
  - B. DNA Polymerase III Remains Bound to the Replication Fork 637
  - C. Proofreading Corrects Polymerization Errors 638
- 20.3 DNA Polymerase Synthesizes Two Strands Simultaneously 639
  - A. Lagging-Strand Synthesis Is Discontinuous 639
  - B. Each Okazaki Fragment Begins with an RNA Primer 640
  - C. Okazaki Fragments Are Joined by the Action of DNA Polymerase I and DNA Ligase 641
- 20.4 Model of the Replisome 644
- 20.5 Initiation and Termination of DNA Replication 646
- Sequencing DNA Using Dideoxynucleotides 647 20.6
- 20.7 DNA Replication in Eukaryotes 649
- 20.8 Repair of Damaged DNA 650
  - A. Repair after Photodimerization: An Example of Direct Repair 651
  - B. Excision Repair 652
- 20.9 Homologous Recombination 655
  - A. The Holliday Model of General Recombination 655
  - B. Recombination in E. coli 657
  - C. Recombination Can Be a Form of Repair 658

Summary 660

Problems 661

Selected Readings 663







#### 21 Transcription and RNA Processing 666

- 21.1 Types of RNA 667
- 21.2 RNA Polymerase 668
  - A. RNA Polymerase Is an Oligonferic Protein 668
  - B. The Chain Elongation Reaction 669
- 21.3 Transcription Initiation 670
  - A. Genes Have a  $5' \rightarrow 3'$  Orientation 671
  - B. The Transcription Complex Assembles at a Promoter 671
  - C. The σ Suburnt Recognizes the Promoter 673
  - D. RNA Polymerase Changes Conformation 674
- 21.4 Transcription Termination 676
- 21.5 Transcription in Eukaryotes 678
  - A. Eukaryotic RNA Polymerases 678
  - B. Eukaryotic Transcription Factors 678
- 21.6 Transcription of Genes Is Regulated 681
- 21.7 The lac Operon, an Example of Negative and Positive Regulation 683
  - A. lac Repressor Blocks Transcription 683
  - B. The Structure of lac Repressor 684
  - C. cAMP Regulatory Protein Activates Transcription 686
- 21.8 Posttranscriptional Modification of RNA 689
  - A. Transfer RNA Processing 689
  - B. Ribosomal RNA Processing 689
- 21.9 Eukaryotic mRNA Processing 691
  - A. Eukaryotic mRNA Molecules Have Modified Ends 691
  - B. Some Eukaryotic mRNA Precursors Are Spliced 693

Summary 698

Problems 698

Selected Readings 699

## 22 Protein Synthesis 700

- 22.1 The Genetic Code 700
- 22.2 Transfer RNA 703
  - A. The Three-Dimensional Structure of tRNA 703
  - B. tRNA Anticodons Base-Pair with mRNA Codons 705
- 22.3 Aminoacyl-tRNA Synthetases 706
  - A. The Aminoacyl-tRNA Synthetase Reaction 706
  - B. Specificity of Aminoacyl-tRNA Synthetases 708
  - C. Proofreading Activity of Aminoacyl-tRNA Synthetases 709
- 22.4 Ribosomes 709
  - A. Ribesomes Are Composed of Both Ribesomal RNA and Protein 710
  - B. Ribosomes Contain Two Aminoacyl-tRNA Binding Sites 711
- 22.5 Initiation of Translation 712
  - A. Initiator tRNA 712
  - B. Initiation Complexes Assemble Only at Initiation Codons 712
  - C. Initiation Factors Help Form the Initiation Complex 713
  - D. Translation Initiation in Eukaryotes 715

xxxiii

| 22.6 | Chain Elongation | ls a | Three-Step Microcycle | 215 |
|------|------------------|------|-----------------------|-----|
|------|------------------|------|-----------------------|-----|

- A. Elongation Factors Dock an Aminoacyl-tRNA in the A Site 716
- B. Peptidyl Transferase Catalyzes Peptide Bond Formation 718
- C. Translocation Moves the Ribosome by One Codon 720
- Termination of Translation 720 22.7
- 22.8 Protein Synthesis Is Energetically Expensive 722
- 22.9 Regulation of Protein Synthesis 722
  - A. Ribosomal Protein Synthesis Is Coupled to Ribosome Assembly in E. coli 722

Some Antibiotics Inhibit Protein Synthesis 723

- B. Globin Synthesis Depends on Heme Availability 724
- C. The E. coli trp Operon Is Regulated by Repression and Attenuation 725
- 22.10 Posttranslational Processing 728
  - A. The Signal Hypothesis 728
  - B. Glycosylation of Proteins 732

Summary 733

Problems 733

Selected Readings 734

#### **23** Recombinant DNA Technology 735

- 23.1 Making Recombinant DNA 735
- 23.2 Cloning Vectors 737
  - A. Plasmid Vectors 739
  - B. Bacteriophage λ Vectors 739
  - C. Shuttle Vectors 741
  - D. Yeast Artificial Chromosomes as Vectors 741
- 23.3 Identification of Host Cells Containing Recombinant DNA 742
  - A. Selection Strategies Use Marker Genes 742
  - B. Selection in Eukaryotes 743
  - C. Visual Markers: Insertional Inactivation of the β-Galactosidase Gene 744
- 23.4 Genomic Libraries 744
  - 1800 1804 The Human Genome Project 745
- 23.5 cDNA Libraries Are Made from Messenger RNA 745
- 23.6 Screening a Library 747
- 23.7 Chromosome Walking 749
- 23.8 Expression of Proteins Using Recombinant DNA Technology
  - A. Prokaryotic Expression Vectors 750
  - B. Expression of Proteins in Eukaryotes 751
- 23.9 Applications of Recombinant DNA Technology 753
  - A. Genetic Engineering of Plants 753
  - B. Genetic Engineering in Prokaryotes
- 23.10 Applications to Human Diseases 755
- 23.11 The Polymerase Chain Reaction Amplifies Selected DNA Sequences 757 Medical Uses of PCR 759





#### xxxiv Contents

23.12 Site-Directed Mutagenesis of Cloned DNA 760
 Summary 761
 Problems 761
 Selected Readings 763

Solutions 767

Illustration Credits 821

Glossary 823

Index 837