Mathematical Modeling in Continuum Mechanics

Roger Temam Alain Miranville

Contents

Introduction		page ix	
A I	Few V	Vords About Notations	xii
		PART ONE. FUNDAMENTAL CONCEPTS IN	
•		CONTINUUM MECHANICS	
1	Des	scribing the Motion of a System: Geometry and Kinematics	3
•	1.1	Deformations	3
	1.2	Motion and Its Observation (Kinematics)	6
	1.3	Description of the Motion of a System: Eulerian	
		and Lagrangian Derivatives	10
4	1.4	Velocity Field of a Rigid Body: Helicoidal Vector Fields	12
	1.5		
		on a Parameter	17
2	The	Fundamental Law of Dynamics	21
	2.1	The Concept of Mass	21
	2,2	Forces	27
	2.3	The Fundamental Law of Dynamics and Its	
		First Consequences	28
	2.4	Application to Systems of Material Points	
		and to Rigid Bodies	31
	2.5	Galilean Frames: The Fundamental Law of Dynamics	
		Expressed in a Non-Galilean Frame	35
3	The Cauchy Stress Tensor - Applications		38
	3.1	Hypotheses on the Cohesion Forces	38
	3.2		41
	3.3	General Equations of Motion	44
	3.4	Symmetry of the Stress Tensor	46

vi Contents

4	Rea	l and Virtual Powers	48	
	4.1	Study of a System of Material Points	48	
	4.2	General Material Systems: Rigidifying Velocities	52	
	4.3	Virtual Power of the Cohesion Forces: The General Case	54	
	4.4	Real Power: The Kinetic Energy Theorem	58	
5	Deformation Tensor, Deformation Rate Tensor,			
	Constitutive Laws			
	5.1	Further Properties of Deformations	60	
	5.2	The Deformation Rate Tensor	65	
	5.3	Introduction to Rheology: The Constitutive Laws	67	
6	Ene	rgy Equations and Shock Equations	77	
	6.1	Heat and Energy	77	
	6.2	Shocks and the Rankine-Hugoniot Relations	82	
		PART TWO. PHYSICS OF FLUIDS		
7	Gen	eral Properties of Newtonian Fluids	89	
	7.1	General Equations of Fluid Mechanics	89	
	7.2	Statics of Fluids	95	
	7.3	Remark on the Energy of a Fluid	100	
8	Flows of Inviscid Fluids			
	8.1	General Theorems	102	
	8.2	Plane Irrotational Flows	106	
	8.3	Transsonic Flows	116	
	8.4	Linear Acoustics	120	
9	Viscous Fluids and Thermohydraulics		122	
	9.1	Equations of Viscous Incompressible Fluids	122	
	9.2		123	
	9.3	Thermohydraulics	129	
	9.4	Equations in Nondimensional Form: Similarities	131	
	9.5	Notions of Stability and Turbulence	133	
	9.6	Notion of Boundary Layer	137	
10	Magnetohydrodynamics and Inertial Confinement of Plasmas			
	10.1	The Maxwell Equations and Electromagnetism	142	
	10.2	Magnetohydrodynamics	146	
	10.3	The Tokamak Machine	148	
11	Con	nbustion	153	
	11.1	Equations for Mixtures of Fluids	153	
	11.2	Equations of Chemical Kinetics	155	

	Contents	vii

	11.3 The Equations of Combustion	157	
	11.4 Stefan-Maxwell Equations	159	
	11.5 A Simplified Problem: The Two-Species Model	162	
12	Equations of the Atmosphere and of the Ocean	164	
	12.1 Preliminaries	165	
	12.2 Primitive Equations of the Atmosphere	167	
	12.3 Primitive Equations of the Ocean	171	
	12.4 Chemistry of the Atmosphere and the Ocean	172	
	Appendix: The Differential Operators in Spherical Coordinates	174	
	PART THREE. SOLID MECHANICS		
13	The General Equations of Linear Elasticity	179	
	13.1 Back to the Stress-Strain Law of Linear Elasticity:		
	The Elasticity Coefficients of a Material	179	
	13.2 Boundary Value Problems in Linear Elasticity:		
	The Linearization Principle	181	
	13.3 Other Equations	186	
	13.4 The Limit of Elasticity Criteria	189	
14	Classical Problems of Elastostatics		
	14.1 Longitudinal Traction-Compression of a Cylindrical Bar	191	
	14.2 Uniform Compression of an Arbitrary Body	194	
	14.3 Equilibrium of a Spherical Container Subjected to External		
	and Internal Pressures	195	
	14.4 Deformation of a Vertical Cylindrical Body Under the Action		
	of Its Weight	198	
	14.5 Simple Bending of a Cylindrical Beam	201	
	14.6 Torsion of Cylindrical Shafts	205	
	14.7 The Saint-Venant Principle	208	
15	Energy Theorems – Duality: Variational Formulations	210	
	15.1 Elastic Energy of a Material	210	
	15.2 Duality – Generalization	212	
	15.3 The Energy Theorems	215	
	15.4 Variational Formulations	218	
	15.5 Virtual Power Theorem and Variational Formulations	221	
16	Introduction to Nonlinear Constitutive Laws		
	and to Homogenization	223	
	16.1 Nonlinear Constitutive Laws (Nonlinear Elasticity)	224	
	16.2 Nonlinear Elasticity with a Threshold		
	(Henky's Elastoplastic Model)	226	

viii Contents

	16.3 Nonconvex Energy Functions	228	
	16.4 Composite Materials: The Problem of Homogenization	230	
	PART FOUR. INTRODUCTION TO WAVE PHENOMENA		
17	Linear Wave Equations in Mechanics	235	
	17.1 Returning to the Equations of Linear Acoustics		
	and of Linear Elasticity	236	
	17.2 Solution of the One-Dimensional Wave Equation	239	
	17.3 Normal Modes	241	
	17.4 Solution of the Wave Equation	245	
	17.5 Superposition of Waves, Beats, and Packets of Waves	249	
18	The Soliton Equation: The Korteweg-de Vries Equation	252	
	18.1 Water-Wave Equations	253	
	18.2 Simplified Form of the Water-Wave Equations	255	
	18.3 The Korteweg-de Vries Equation	258	
	18.4 The Soliton Solutions of the KdV Equation	262	
19	The Nonlinear Schrödinger Equation	264	
	19.1 Maxwell Equations for Polarized Media	265	
	19.2 Equations of the Electric Field: The Linear Case	267	
	19.3 General Case	270	
	19.4 The Nonlinear Schrödinger Equation	274	
	19.5 Soliton Solutions of the NLS Equation	277	
Аp	pendix The Partial Differential Equations of Mechanics	279	
Rej	ferences	281	
Ind	Index		