
Vector Calculus, Linear Algebra, and Differential Forms

A Unified Approach Second Edition

John H. Hubbard • Barbara Burke Hubbard

Contents

PREF	FACE	xi		
CHAI	PTER 0 Preliminaries			
0.0	Introduction	1		
0.1	Reading Mathematics	1		
0.2	Quantifiers and Negation	4		
0.3	Set Theory	6		
0.4	Functions			
0.5	Real Numbers			
0.6	Infinite Sets	22		
0.7	Complex Numbers	26		
CHAI	PTER 1 Vectors, Matrices, and Derivatives			
1.0	Introduction	33		
1.1	Introducing the Actors: Points and Vectors	34		
1.2	Introducing the Actors: Matrices	43		
1.3	A Matrix as a Transformation	59		
1.4	The Geometry of \mathbb{R}^n	71		
1.5	Limits and Continuity	89		
1.6	Four Big Theorems	110		
1.7	Differential Calculus	125		
1.8	Rules for Computing Derivatives	146		
1.9	Mean Value Theorem and Criteria for Differentiability	154		
1.10	Review Exercises for Chapter 1	162		
CHAI	PTER 2 Solving Equations			
2.0	Introduction	169		
2.1	The Main Algorithm: Row Reduction	170		
2.2	Solving Equations Using Row Reduction	178		
2.3	Matrix Inverses and Elementary Matrices	186		
2.4	Linear Combinations, Span, and Linear Independence	192		
2.5	Kernels, Images, and the Dimension Formula	206		
2.6	An Introduction to Abstract Vector Spaces	224		
27	Newton's Method	997		

,	viii	Contents		

2.8	Superconvergence	257
2.9	The Inverse and Implicit Function Theorems	264
2.10	Review Exercises for Chapter 2	285
СНА	PTER 3 Higher Partial Derivatives, Quadratic Forms, and Manifolds	
3.0	Introduction	291
3.1	Manifolds	292
3.2	Tangent Spaces	316
3.3	Taylor Polynomials in Several Variables	323
3.4	Rules for Computing Taylor Polynomials	335
3.5	Quadratic Forms	343
3.6	Classifying Critical Points of Functions	353
3.7	Constrained Critical Points and Lagrange Multipliers	360
3.8	Geometry of Curves and Surfaces	377
3.9	Review Exercises for Chapter 3	394
СНАІ	PTER 4 Integration	
4.0	Introduction	399
4.1	Defining the Integral	400
4.2	Probability and Centers of Gravity	415
4.3	What Functions Can Be Integrated?	428
4.4	Integration and Measure Zero (Optional)	435
4.5	Fubini's Theorem and Iterated Integrals	443
4.6	Numerical Methods of Integration	455
4.7	Other Pavings	467
4.8	Determinants	469
4.9	Volumes and Determinants	485
4.10	The Change of Variables Formula	492
4.11	Lebesgue Integrals	505
4.12	Review Exercises for Chapter 4	523
CHAI	PTER 5 Volumes of Manifolds	, i
5.0	Introduction	527
5.1	Parallelograms and their Volumes	52 8
5.2	Parametrizations	532
5.3	Computing Volumes of Manifolds	540
5.4	Fractals and Fractional Dimension	553
5.5	Review Exercises for Chapter 5	555

	Contents ix
CHAPTER 6 Forms and Vector Calculus	
6.0 Introduction	557
6.1 Forms on \mathbb{R}^n	558
6.2 Integrating Form Fields over Parametrized Domains	574
6.3 Orientation of Manifolds	579
6.4 Integrating Forms over Oriented Manifolds	590
6.5 Forms and Vector Calculus	602
6.6 Boundary Orientation	614
6.7 The Exterior Derivative	627
6.8 The Exterior Derivative in the Language of Vector	Calculus 635
6.9 The Generalized Stokes's Theorem	642
6.10 The Integral Theorems of Vector Calculus	651
6.11 Potentials	658
6.12 Review Exercises for Chapter 6	664
APPENDIX A: Some Harder Proofs	
A.0 Introduction	669
A.1 Arithmetic of Real Numbers	669
A.2 Cubic and Quartic Equations	673
A.3 Two Extra Results in Topology	679
A.4 Proof of the Chain Rule	680
A.5 Proof of Kantorovich's theorem	682
A.6 Proof of Lemma 2.8.5 (Superconvergence)	688
A.7 Proof of Differentiability of the Inverse Function	690
A.8 Proof of the Implicit Function Theorem	693
A.9 Proof of Theorem 3.3.9: Equality of Crossed Partie	ds 696
A.10 Proof of Proposition 3.3.19	698
A.11 Proof of Rules for Taylor Polynomials	701
A.12 Taylor's Theorem with Remainder	706
A.13 Proof of Theorem 3.5.3 (Completing Squares)	711
A.14 Geometry of Curves and Surfaces: Proofs	712
A.15 Proof of the Central Limit Theorem	718
A.16 Proof of Fubini's Theorem	722
A.17 Justifying the Use of Other Pavings	726
A.18 Existence and Uniqueness of the Determinant	728
A.19 Rigorous Proof of the Change of Variables Formula	732
A.20 Justifying Volume 0	739
A.21 Lebesgue Measure and Proofs for Lebesgue Integra	ls 741

x Contents

A.22	Justifying the Change of Parametrization	759
A.23	Computing the Exterior Derivative	762
A.24	The Pullback	766
A.25	Proof of Stokes' Theorem	771
APPE	783	
B.1	MATLAB Newton Program	783
B.2	Monte Carlo Program	784
B.3	Determinant Program	786
BIBLIOGRAPHY		789
INDEX		791