CAMBRIDGE TEXTS IN APPLIED MATHEMATICS

An Introduction to Magnetohydrodynamics

P.A. DAVIDSON

Contents

Pre	face	page xvii
Par	t A: The Fundamentals of MHD	1
Intr	roduction: The Aims of Part A	. 1
1	A Qualitative Overview of MHD	. 3
1.1	What is MHD?	3
1.2	A Brief History of MHD	6
1.3	From Electrodynamics to MHD: A Simple Experiment	: 8
	1.3.1 Some important parameters in electrodynamics	
	and MHD	8
	1.3.2 A brief reminder of the laws of electrodynamic	es 9
	1.3.3 A familiar high-school experiment	11
	1.3.4 A summary of the key results for MHD	18
1.4	Some Simple Applications of MHD	18
2	The Governing Equations of Electrodynamics	27
2.1	The Electric Field and the Lorentz Force	27
2.2	Ohm's Law and the Volumetric Lorentz Force	29
2.3	Ampère's Law	31
2.4	Faraday's Law in Differential Form	32
2.5	The Reduced Form of Maxwell's Equations for MHD	34
2.6	A Transport Equation for B	37
2.7	On the Remarkable Nature of Faraday and of	
	Faraday's Law	37
	2.7.1 An historical footnote	37
	2.7.2 An important kinematic equation	40

X Contents

	2.7.3	The full significance of Faraday's law	42
	2.7.4	Faraday's law in ideal conductors: Alfvén's theorem	44
3		overning Equations of Fluid Mechanics	47
Part	1: Fluid	l Flow in the Absence of Lorentz Forces	47
3.1	Elemer	ntary Concepts	47
	3.1.1	Different categories of fluid flow	47
	3.1.2	The Navier-Stokes equation	59
3.2	Vortici	ty, Angular Momentum and the Biot-Savart Law	61
3.3	Advect	ion and Diffusion of Vorticity	64
	3.3.1	The vorticity equation	64
	3.3.2	Advection and diffusion of vorticity: temperature	
		as a prototype	66
	3.3.3	Vortex line stretching	70
3.4	Kelvin'	's Theorem, Helmholtz's Laws and Helicity	71
	3.4.1	Kelvin's Theorem and Helmholtz's Laws	71
	3.4.2	Helicity	74
3.5	The Pr	andtl-Batchelor Theorem	77
3.6	Bounda	ary Layers, Reynolds Stresses and Turbulence Models	81
	3.6.1	Boundary layers	81
	3.6.2	Reynolds stresses and turbulence models	83
3.7	Ekman	Pumping in Rotating Flows	90
Part	2: Incor	porating the Lorentz Force	95
3.8	The Fu	all Equations of MHD and Key Dimensionless	
	Groups	3	95
3.9	Maxwe	ell Stresses	97
4	V:	Alexand BATTIN, All and a larger to	
4		itics of MHD: Advection and Diffusion agnetic Field	100
	OI M IVI	agnetic Field	102
4.1		nalogy to Vorticity	102
4.2		on of a Magnetic Field	103
4.3		ion in Ideal Conductors: Alfvén's Theorem	104
	4.3.1	Alfvén's theorem	104
	4.3.2	An aside: sunspots	106
4.4	_	tic Helicity	108
4.5		ion plus Diffusion	109
	4.5.1	Field sweeping	109
	4.5.2	Flux expulsion	110

-	
Contents	X1
Continuo	

5.4 N	Magnetic reconnection	115
ynamics	at Low Magnetic Reynolds Numbers	117
ne Low-	$-R_m$ Approximation in MHD	118
Suppres	ssion of Motion	119
agnetic	Damping	119
		120
2.2 T	The damping of a two-dimensional jet	121
2.3 I	Damping of a vortex	122
Glimps	se at MHD Turbulence	128
atural (Convection in the Presence of a Magnetic Field	132
4.1 F	Rayleigh-Bénard convection	132
4.2 7	The governing equations	133
4.0	A	
4.3 A	An energy analysis of the Rayleigh-Bénard	
	nstability	134
i		134 137
i: 4.4 I	nstability	
i: 4.4 l Genera	nstability Natural convection in other configurations	137
i: 4.4 1 Genera otating	nstability Natural convection in other configurations	137 139
4.4 1 Genera otating 5.1 S	nstability Natural convection in other configurations tion of Motion Fields and Swirling Motions	137 139 139
4.4 1 Genera otating 5.1 \$ 5.2 \$	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal	137 139 139 139
Genera otating 5.1 S 5.2 S Iotion I	nstability Natural convection in other configurations Ition of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates	137 139 139 139 142
6.1 in the second of the secon	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection	137 139 139 139 142 145
i: 4.4	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem	137 139 139 139 142 145 145
i: 4.4 1 1 General otating 5.1 S 5.2 S lotion I 6.1 4 6.2 4 6.3 1	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation	137 139 139 139 142 145 145 146
i: 4.4 N Genera otating 5.1 S 5.2 S lotion I 6.1 A 6.2 A 6.3 I 6.4 A	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity	137 139 139 139 142 145 145 146 148
i: 4.4 N Genera otating 5.1 S 5.2 S fotion I 6.1 A 6.2 A 6.3 I 6.4 A Bounda	nstability Natural convection in other configurations Ition of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers	137 139 139 142 145 145 146 148 149
6.1 A 6.2 Boundar	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers an Boundary Layers	137 139 139 142 145 145 146 148 149
6.1 A 6.2 A 6.4 Boundartman 7.1	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers In Boundary Layers The Hartmann Layer	137 139 139 139 142 145 145 146 148 149 151
General otating 5.1 S 5.2 S lotion I 6.1 A 6.2 A 6.3 I 6.4 A Boundar 7.1 T 7.2 I 7.2	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers The Hartmann Layer Hartmann flow between two planes	137 139 139 139 142 145 145 146 148 149 151
General otating 5.1 S 5.2 S fotion I 6.1 A 6.2 A 6.3 I 6.4 A Boundartman 7.1 T 7.2 I xample.	nstability Natural convection in other configurations Ition of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers In Boundary Layers The Hartmann Layer Hartmann flow between two planes s of Hartmann and Related Flows	137 139 139 139 142 145 145 146 148 149 151 151 151
General otating 5.1 S 5.2 S fotion I 6.1 A 6.2 A 6.3 I 6.4 A Boundar T.1 T.2 I xample 8.1 I	nstability Natural convection in other configurations ation of Motion Fields and Swirling Motions Stirring of a long column of metal Swirling flow induced between two parallel plates Driven by Current Injection A model problem A useful energy equation Estimates of the induced velocity A paradox ary Layers The Hartmann Layer Hartmann flow between two planes	137 139 139 142 145 145 146 148 149 151 151 152 154
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Suppress agnetic 3.1 T 3.2 T 3.3 I Glimp atural (3.1 1	Joule dissipation 2.2 The damping of a two-dimensional jet 2.3 Damping of a vortex Glimpse at MHD Turbulence atural Convection in the Presence of a Magnetic Field 3.1 Rayleigh-Bénard convection

	٠	•
w	٠	1
Λ	z	ı.

Contents

6	Dynamics at Moderate to High Magnetic Reynolds' Number			
	Reynol	ds' Number	159	
6.1	Alfvén	Waves and Magnetostrophic Waves	160	
	6.1.1	Alfvén waves	160	
	6.1.2	Magnetostrophic waves	163	
6.2	Elemen	nts of Geo-Dynamo Theory	166	
	6.2.1	Why do we need a dynamo theory for the earth?	166	
	6.2.2	A large magnetic Reynolds number is needed	171	
	6.2.3	An axisymmetric dynamo is not possible	174	
	6.2.4	The influence of small-scale turbulence: the α -effect	177	
	6.2.5	Some elementary dynamical considerations	185	
	6.2.6	Competing kinematic theories for the geo-dynamo	197	
6.3	_	litative Discussion of Solar MHD	199	
	6.3.1	The structure of the sun	200	
	6.3.2	Is there a solar dynamo?	201	
	6.3.3	Sunspots and the solar cycle	201	
	6.3.4	The location of the solar dynamo	203	
	6.3.5	Solar flares	203	
6.4		-Based Stability Theorems for Ideal MHD	206	
	6.4.1	The need for stability theorems in ideal MHD:		
		plasma containment	207	
	6.4.2	The energy method for magnetostatic equilibria	208	
	6.4.3	An alternative method for magnetostatic equilibrium	213	
	6.4.4	Proof that the energy method provides both necessary	y	
		and sufficient conditions for stability	215	
	6.4.5	The stability of non-static equilibria	216	
6.5	Conclu	sion	220	
7	MHD '	Furbulence at Low and High Magnetic		
		ds Number	222	
7.1	A Surv	ey of Conventional Turbulence	223	
	7.1.1	A historical interlude	223	
	7.1.2	A note on tensor notation	227	
	7.1.3	The structure of turbulent flows: the Kolmogorov		
		picture of turbulence	229	
	7.1.4	Velocity correlation functions and the Karman-		
		Howarth equation	235	

X111
VIII

			_
		Loitsyansky's integral, Landau's angular momentun	
		and Batchelor's pressure forces	240
	7.1.6	On the difficulties of direct numerical simulations	247
7.2	MHD	Turbulence	249
	7.2.1	The growth of anisotropy at low and high R_m	249
	7.2.2	Decay laws at low R_m	252
	7.2.3	The spontaneous growth of a magnetic field at	
		high R_m	256
7.3	Two-D	Dimensional Turbulence	260
	7.3.1	Batchelor's self-similar spectrum and the inverse	
		energy cascade	260
	7.3.2	Coherent vortices	263
	7.3.3	The governing equations of two-dimensional	
		turbulence	264
	7.3.4	Variational principles for predicting the final state	
		in confined domains	267
Par	t R: Ann	dications in Engineering and Metallurgy	273
Ynte	advation	· An Overview of Metallurgical Applications	273
		n: An Overview of Metallurgical Applications	273
Intr 8		n: An Overview of Metallurgical Applications etic Stirring Using Rotating Fields	285
	Magne Castin	etic Stirring Using Rotating Fields g, Stirring and Metallurgy	285 285
8	Magne Castin Early	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring	285
8 8.1	Magne Castin Early I	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring	285 285 289
8 8.1 8.2	Magne Castin Early The D of Cor	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids	285 285 289 294
8 8.1 8.2	Magne Castin Early The D of Cor	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring	285 285 289
8 8.1 8.2 8.3	Magnet Castin Early 1 The D of Cor The St	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids	285 285 289 294
8 8.1 8.2 8.3	Magnet Castin Early : The D of Cor The St	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel	285 285 289 294 298
8 8.1 8.2 8.3 8.4	Magnet Castin Early : The D of Cor The St Magnet	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel	285 285 289 294 298 301
8 8.1 8.2 8.3 8.4 9	Magnet Castin Early 1 The D of Cor The St Magnet Metall Conse	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications	285 285 289 294 298 301
8 8.1 8.2 8.3 8.4 9	Magnet Castin Early The D of Cor The St Magnet Metall Conse and the	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications rvation of Momentum, Destruction of Energy	285 285 289 294 298 301 301
8 8.1 8.2 8.3 8.4 9 9.1 9.2	Magnet Castin Early The Dof Cor The St Magnet Conse and the Magnet Conse	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields durgical Applications rvation of Momentum, Destruction of Energy the Growth of Anisotropy	285 285 289 294 298 301 301
8 8.1 8.2 8.3 8.4 9 9.1 9.2	Magnet Castin Early The Dof Cor The St Magnet Conse and the Magnet Conse	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications rvation of Momentum, Destruction of Energy the Growth of Anisotropy etic Damping of Submerged Jets	285 285 289 294 298 301 301 304 308
8 8.1 8.2 8.3 8.4 9 9.1 9.2	Magnet Castin Early The Dof Cor The St Magnet Metall Conse and the Magnet	etic Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications rvation of Momentum, Destruction of Energy the Growth of Anisotropy etic Damping of Submerged Jets etic Damping of Vortices	285 285 289 294 298 301 301 304 308 312
8 8.1 8.2 8.3 8.4 9 9.1 9.2	Magnet Castin Early The D of Cor The St Magnet Metall Conse and the Magnet Magnet 9.4.1	g, Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications rvation of Momentum, Destruction of Energy the Growth of Anisotropy etic Damping of Submerged Jets etic Damping of Vortices General considerations Damping of transverse vortices	285 285 289 294 298 301 301 304 308 312 312
8 8.1 8.2 8.3 8.4 9 9.1 9.2	Magnet Castin Early The D of Cor The St Magnet Metall Conse and the Magnet Magnet 9.4.1	g, Stirring Using Rotating Fields g, Stirring and Metallurgy Models of Stirring cominance of Ekman Pumping in the Stirring infined Liquids cirring of Steel etic Damping Using Static Fields lurgical Applications rvation of Momentum, Destruction of Energy the Growth of Anisotropy etic Damping of Submerged Jets etic Damping of Vortices General considerations Damping of transverse vortices	285 285 289 294 298 301 301 304 308 312 312 314

xiv Contents

	9.5.1	Natural convection in an aluminium ingot	324		
	9.5.2	Magnetic damping in an aluminium ingot	329		
10	Axisyn	nmetric Flows Driven by the Injection			
	of Cur	• •	332		
10.1	The V	AR Process and a Model Problem	332		
	10.1.1	The VAR process	332		
	10.1.2	Integral constraints on the flow	336		
10.2	The W	ork Done by the Lorentz Force	338		
10.3	Structi	are and Scaling of the Flow	340		
	10.3.1	Differences between confined and unconfined flows	340		
		Shercliff's self-similar solution for unconfined flows	342		
	10.3.3	Confined flows	344		
10.4	The In	fluence of Buoyancy	346		
10.5	Stabilit	ty of the Flow and the Apparent Growth of Swirl	348		
	10.5.1		348		
	10.5.2	There is no spontaneous growth of swirl!	350		
10.6	Flaws	in the Traditional Explanation for the Emergence			
	of Swi	rl	351		
10.7	The Re	ôle of Ekman Pumping in Establishing the Dominance			
	of Swi		353		
	10.7.1	A glimpse at the mechanisms	353		
		A formal analysis	356		
		Some numerical experiments	358		
11	MHD :	Instabilities in Reduction Cells	363		
11.1	Interfa	cial Waves in Aluminium Reduction Cells	363		
	11.1.1		363		
	11.1.2	· · · · · · · · · · · · · · · · · · ·	364		
11.2	A Sim	ble Mechanical Analogue for the Instability	368		
		ying Assumptions	372		
		low-Water Wave Equation and Key Dimensionless	J 1 2		
	11.4.1	A shallow-water wave equation	374 374		
	11.4.2	•	378		
11.5		ing Wave and Standing Wave Instabilities	379		
	11.5.1	Travelling waves	379		
	11.5.2		380		
	11.5.3	Standing waves in rectangular domains	381		

Contents	XV
11.6 Implications for Reduction Cell Design	38:
12 High-Frequency Fields: Magnetic Levitation	
and Induction Heating	387
12.1 The Skin Effect	388
12.2 Magnetic Pressure, Induction Heating and High-	
Frequency Stirring	390
12.3 Applications in the Casting of Steel, Aluminium and	
Super-Alloys	394
12.3.1 The induction furnace	394
12.3.2 The cold crucible	397
12.3.3 Levitation melting	398
12.3.4 Processes which rely on magnetic repulsion EM	
valves and EM casters	403
Appendices	
1 Vector Identities and Theorems	405
2 Stability Criteria for Ideal MHD Based on the Hamiltonian	1 407
3 Physical Properties of Liquid Metals	417
4 MHD Turbulence at Low R_m	418
Bibliography	422
Suggested Books on Fluid Mechanics	422
Suggested Books on Electromagnetism	422
Suggested Books on MHD	423
Journal References for Part B and Appendix 2	423
Subject Index	427