Applied Contaminant Transport Modeling

Second Edition

Chunmiao Zheng Gordon D. Bennett

CONTENTS

Preface		xvii	
Preface to the First Edition			xix
1	INT	RODUCTION	1
	1.1	Solute Transport and the Role of Simulation	1
	1.2	A Historical Perspective	5
		1.2.1 Pre-1960s Era	5
	2 °	1.2.2 Post-1960s Era	6
	1.3	About This Book	8
	1.4	A Note on Computer Software	10
2	DAI 2.1	RCY'S LAW AND ADVECTIVE TRANSPORT Average Particle Velocity and Time of Travel	13 13
2	DAI	RCY'S LAW AND ADVECTIVE TRANSPORT	13
	2.2	- ·	
-		Groundwater Flow	17
	2.3	Advective Transport	20
	-	2.3.1 Mass-Balance Considerations and the Eulerian	
		Approach to Advective Transport	20
		2.3.2 The Particle Tracking Approach to Advective	
	_	Transport	29
	Furt	her Reading and Problems	32
			vii

3	DIS	PERSIVE TRANSPORT AND MASS TRANSFER	34
	3.1	Introduction	34
	3.2	Microscopic Dispersive Processes	35
		3.2.1 Mechanism of Hydrodynamic Dispersion	35
		3.2.2 The Analogy between Dispersive Transport and	
		Molecular Diffusion	41
		3.2.3 Dispersive Flux and Dispersion Coefficient in Two	
		Dimensions	44
		3.2.4 Dispersive Flux and Dispersion Coefficient in Three	50
		Dimensions	53
	2.2	3.2.5 Porosity in Solute Transport Calculation	56
	3.3	Macroscopic Dispersion	57
	3.4	Development of the Advection-Dispersion Equation	65
	3.5	Advective – Diffusive Systems	71
	run	her Reading and Problems	76
4	TR/	ANSPORT WITH CHEMICAL REACTIONS	78
	4.1	Introduction	78
	4.2	Equilibrium-Controlled Sorption	80
		4.2.1 Sorption Isotherms and the Representation of	80
		Sorption in Transport Equations	
		4.2.2 Sorption of Organic Compounds	87
		4.2.3 Ion Exchange	88
	4.3	Kinetic Sorption	91
	4.4	· ········	92
	4.5	Monod Kinetic Reactions	95
	4.6	Multispecies Kinetic Reactions	97
		4.6.1 Instantaneous Reactions	98
		4.6.2 Multiple Monod Kinetics	100
		4.6.3 First-Order Parent-Daughter Chain Reactions	101
	4.7	Reactions in a Dual-Domain System	103
	Furt	her Reading and Problems	105
5	MA [·]	THEMATICAL MODEL AND ANALYTICAL	
	SOL	LUTIONS	107
	5.1	Mathematical Model of Solute Transport	107
		5.1.1 Governing Equations	107
		5.1.2 Initial Conditions	110
		5.1.3 Boundary Conditions	110
		5.1.4 Solution of the Mathematical Model	114
	5.2	Analytical Solutions	114
	Furt	her Reading and Problems	119

6	SIM	ULATION OF ADVECTIVE TRANSPORT	123
	6.1	Introduction	123
	6.2	Particle Tracking Method	124
		6.2.1 Velocity Interpolation	125
		6.2.2 Tracking Schemes	139
		6.2.3 Effect of Spatial Discretization	150
	6.3	Capture Zone Delineation	156
		6.3.1 Two-Dimensional Steady-State Flows	156
		6.3.2 Three-Dimensional Steady-State Flows	158
		6.3.3 Transient Flows	159
	6.4	Evaluation of Travel Times	161
		6.4.1 Contaminant Arrival/Breakthrough Distribution	162
		6.4.2 Cleanup Times	164
		6.4.3 Residence Times and Geochemical Evolution	166
	6.5	General Particle Tracking Codes	166
	Furt	her Reading and Problems	167
7	QIM	IULATION OF ADVECTIVE-DISPERSIVE	
•		ANSPORT	171
	7.1	Introduction	171
	7.2	Eulerian Methods	173
		7.2.1 Finite-Difference Method	173
		7.2.2 Finite-Element Method	195
		7.2.3 Finite Element versus Finite Difference	202
	7.3	Lagrangian Methods	203
		7.3.1 Random-Walk Method	203
	7.4	Mixed Eulerian-Lagrangian Methods	209
		7.4.1 Method of Characteristics (MOC)	211
		7.4.2 Modified Method of Characteristics (MMOC)	219
		7.4.3 Hybrid Method of Characteristics	221
		7.4.4 General Mixed Eulerian-Lagrangian Codes	222
	7.5	Total-Variation-Diminishing (TVD) Methods	223
		7.5.1 The ULTIMATE Scheme	223
	Fur	ther Reading and Problems	231
8	SIM	IULATION OF NONEQUILIBRIUM	
•		OCESSES AND REACTIVE TRANSPORT	235
	8.1	Introduction	235
	8.2	Nonequilibrium Sorption	236
	8.3	Dual-Domain Mass Transfer	238

X CONTENTS

	8.4	Multispecies Kinetic Reactions	240
		8.4.1 Simultaneous Solution	240
		8.4.2 Operator Splitting	242
	8.5	Coupled Transport and Geochemical Modeling	243
	8.6	General Reactive Transport Codes	245
	8.7	A Case Study: Modeling Natural Attenuation	247
		8.7.1 Site Description	247
		8.7.2 Modeling Approach	248
		8.7.3 Numerical Model	252
		8.7.4 Discussion of Results	253
	Furt	her Reading and Problems	255
PΑ	ART	2 FIELD APPLICATIONS	259
9	A F	RAMEWORK FOR MODEL APPLICATIONS	261
	9.1	The Model Application Process	261
	9.2	Defining Goals	262
	9.3	Data Collection and Conceptual Model Development	263
	9.4	Selection of a Computer Code	264
	9.5	Building a Contaminant Transport Model	267
	9.6	Model Calibration and Sensitivity Analysis	267
	9.7	Prediction and Uncertainty	268
	9.8	Keys to Successful Model Applications	269
	Furt	her Reading and Problems	270
10	BŲI	LDING A CONTAMINANT TRANSPORT MODEL	271
	10.1	Getting Started	271
		10.1.1 Present Understanding of the Flow System	271
		10.1.2 Dimensions of Analysis	272
		10.1.3 Domains of Simulation	272
	10.2	Spatial Discretizations	273
		10.2.1 Horizontal Nodal Spacing	273
		10.2.2 Vertical Discretization	276
		Temporal Discretizations	279
		Initial Conditions	282
	10.5	Boundary Conditions	283
		10.5.1 Use of the Specified-Concentration Condition	283
		10.5.2 Use of the Specified-Mass-Flux Condition	284
		10.5.3 Role of Flow Model Boundary Conditions in Solute	**
		Transport	284

		10.5.4	Comparison between Flow and Transport Boundary Conditions	285
		10.5.5	A Note on Scale Difference in Flow and Transport	
		20.0.0	Simulation	286
	10.6	Source	es and Sinks	287
		10.6.1	Types of Sources and Sinks	287
		10.6.2	Concentrations of Sources and Sinks	288
	10.7	Data N	Management	290
		10.7.1	Preprocessing and Postprocessing	290
		10.7.2	Geographic Information System (GIS)	292
	Furtl	ner Rea	ding and Problems	293
11	MOI	DEL IN	PUT PARAMETERS	294
	11.1	Data N	Needs in Transport Modeling	294
	11.2		Parameters	295
			Hydraulic Conductivity	295
			Storage Coefficient and Specific Yield	298
	11.3	•	port Parameters	300
			Porosity	300
			Dispersity	302
	11.4		cal Parameters	306
	÷		Sorption Constants	306
		11.4.2	Kinetic Reaction Rates	313
12		, '	ALIBRATION AND SENSITIVITY ANALYSIS	316
	12.1	Basic	Concepts of Model Calibration	316
			The Calibration Process	316
			Calibration, Verification, and Validation	317
			The Nonuniqueness Problem	318
	12.2		sment of Model Calibration	318
			Statistical Measures of Goodness of Fit	318
			Other Considerations in Assessing Model Calibration	320
			Presentation of Calibration Results	321
	12.3		ation by Trial and Error	321
			Procedure and Limitation	321
			Case Studies	326
	12.4		mated" Calibration	328
			Can Calibration Be Automated?	328
			Techniques for Automated Parameter Identification	331
		12.4.3	A Case Study	338

	12.5 Sensitivity Analysis	343
	12.5.1 Sensitivity Coefficients	343
	12.5.2 Procedure for Sensitivity Analysis	345
	Further Reading and Problems	348
13	DEALING WITH UNCERTAINTY	349
	13.1 Introduction	349
	13.2 Types and Sources of Uncertainty	350
	13.3 Methods for Evaluating Uncertainty	352
	13.3.1 Sensitivity Analysis	352
	13.3.2 Monte Carlo Method	353
	13.3.3 First-Order Error Analysis	361
	13.4 Managing Uncertainty	363
	13.4.1 Reduction of Uncertainty	363
	13.4.2 Decisionmaking under Uncertainty	363
	Further Reading and Problems	366
14	CONTAMINANT TRANSPORT MODELING:	
	CASE STUDIES	367
	14.1 Modeling Contaminant Migration from a Landfill at the	
	Borden Site in Canada	367
	14.1.1 Site Description	367
	14.1.2 Historical Perspective	369
	14.1.3 Two-Dimensional Modeling	373
	14.1.4 Three-Dimensional Modeling	383
	14.2 Evaluating Remedial Alternatives at a Superfund Site in New Jersey	202
	-	392
	14.2.1 Site Description 14.2.2 Remedial Objectives	392
	14.2.3 The Modeling Approach	395
	14.2.4 Evaluation of Alternatives	395
	· · · · · · · · · · · · · · · · · · ·	404
	14.3 Assessing Aquifer Susceptibility to Contamination at an Agricultural Field in Wisconsin	413
	14.3.1 Site Description	414
	14.3.2 Groundwater Flow Model	
	14.3.3 Particle Tracking and Assessment of Aquifer	415
	Susceptibility	417
	14.3.4 Transport Modeling and Evaluation of Long-Term Impacts	418

14.4 Application of the Dual-Domain Mass Transfer	
Approach to the MADE Site in Mississippi	427
14.4.1 Site Description	427
14.4.2 The MADE-2 Tracer Test	429
14.4.3 Spatial Discretization and Boundary Conditions	430
14.4.4 Assignment of Hydraulic and Transport Properties	431
14.4.5 Simulation Results for the Kriged Hydraulic Conductivity Field	433
14.4.6 Simulation Results for the Fractal Hydraulic	
Conductivity Field	437
14.4.7 Comparison and Discussion	439
14.4.8 Sensitivity of Dual-Domain Model Parameters	440
PART 3 ADVANCED TOPICS	443
15 SIMULATION OF DENSITY-DEPENDENT FLOW	
AND TRANSPORT	445
15.1 Introduction	445
15.2 The Flow Equation for Variable-Density Conditions	447
15.3 The Relationship between Solute Concentration and Water Density	453
15.4 The Solute Transport Equation	453
15.5 General Solution Sequence	455
15.6 Sharp Interface Approach	458
45.7 General Variable-Density Codes	459
15.8 A Case Study: Seawater Intrusion Modeling	460
15.8.1 Background	460
15.8.2 Cross-Sectional Simulations	462
15.8.3 Three-Dimensional Simulation	465
Further Reading and Problems	471
16 SIMULATION OF FLOW AND TRANSPORT IN THE	
VADOSE ZONE	473
16.1 Introduction	473
16.2 Basic Concepts of Vadose Zone Hydrology	474
16.3 Flow Equation for Partially Saturated Conditions	478
16.4 Solute Transport under Partial Saturation	482
16.4.1 Basic Transport Equation	482

AIF CONTENTS	
16.4.2 Implications of Partial Saturation for Dispersive	
Transport	483
16.4.3 Dual-Domain Systems	484
16.5 Extension to the Air Phase	485
16.5.1 Air-Water Partitioning	485
16.5.2 Air-Phase Transport	486
16.6 General Variably Saturated Codes	488
16.7 An Illustrative Example	489
Further Reading and Problems	493
17 OPTIMAL MANAGEMENT OF GROUNDWATER	
QUALITY	494
17.1 Introduction	494
17.2 The Simulation-Optimization Approach	495
17.3 Optimization Techniques	498
17.3.1 Linear Programming	499
17.3.2 Genetic Algorithms	503
17.3.3 Simulated Annealing	507
17.3.4 Tabu Search	511
17.4 Optimal Management Examples	513
17.4.1 A Hypothetical Example	513
17.4.2 A Field Example	520
Further Reading and Problems	528
APPENDIX A DARCY'S LAW AND THE VARIABLE-DENS	ITY
FLOW EQUATION	529
A.1 Darcy's Law	529
A.2 The Variable-Density Flow Equation	534
APPENDIX B APPLICATION OF STREAM FUNCTIONS TO	0
GROUNDWATER FLOWS	541
B.1 Introduction	541
B.2 Basic Concepts of Stream Functions	541
B.3 Analytical Solutions	545
B.4 Numerical Solutions	550
B.4.1 Governing Equation	550
B.4.2 Boundary Conditions	551
B.4.3 Sinks or Sources	552
B.4.4 Examples	553

B.5 Stream functions in Three-Dimensional Flows B.6 Summary	554 556
Acknowledgement	556
APPENDIX C INFORMATION ON GROUNDWATER MODELING SOFTWARE	557
C.1 How to Obtain and Use the Companion Software	557
C.2 Groundwater Modeling Links	558
References	559
Index	613

OUNIENS AT

\(\frac{1}{2}\)