

A MODERN APPROACH

A. G. Marangoni

CONTENTS

PREFACE					xiii
1	TOO	LS AND	TECHN	IQUES OF KINETIC ANALYSIS	1
	1.1	Genera	lities / 1		
	1.2	Elemen	tary Rate	e Laws / 2	
1		1.2.1	Rate Eq	quation / 2	
		1.2.2	Order o	of a Reaction / 3	
		1.2.3	Rate Co	onstant / 4	
		1.2.4	Integrat	ed Rate Equations / 4	
	-		1.2.4.1	Zero-Order Integrated Rate Equation / 4	
	٠.		1.2.4.2	First-Order Integrated Rate Equation / 5	
			1.2.4.3	Second-Order Integrated Rate Equation / 7	
			1.2.4.4	Third-Order Integrated Rate Equation / 8	
			1.2.4.5	Higher-Order Reactions / 9	
			1.2.4.6	Opposing Reactions / 9	
			1247	Reaction Half-Life / 11	

2

3

	1.2.5	Experimental Determination of Reaction Order and Rate Constants / 12		
		1.2.5.1 Differential Method (Initial Rate Method) / 12		
'		1.2.5.2 Integral Method / 13		
1.3	_	dence of Reaction Rates on rature / 14		
	1.3.1	Theoretical Considerations / 14		
	1.3.2	Energy of Activation / 18		
1.4				
1.5	Theory	of Reaction Rates / 23		
1.6	Comple	ex Reaction Pathways / 26		
	1.6.1	Numerical Integration and Regression / 28		
		1.6.1.1 Numerical Integration / 28		
		1.6.1.2 Least-Squares Minimization (Regression Analysis) / 29		
	1.6.2	Exact Analytical Solution (Non-Steady-State Approximation) / 39		
. •	1.6.3	Exact Analytical Solution (Steady-State Approximation) / 40		
		ZYMES WORK?	41	
	RACTER	RIZATION OF ENZYME ACTIVITY	44	
3.1	Progress Velocity	s Curve and Determination of Reaction / / 44		
3.2	Catalysi State / 4	is Models: Equilibrium and Steady 48		
	3.2.1	Equilibrium Model / 48		
	3.2.2	Steady-State Model / 49		
	3.2.3	Plot of v versus [S] / 50		
3.3		Strategy for Determination of the c Constants K_m and $V_{\text{max}} / 52$		
3.4		Example / 53		
3.5		nation of Enzyme Catalytic Parameters e Progress Curve / 58		

CONTENTS	s ix :
	61
ate / 65	
peptidase	
	70
nce of	
oition in	
and	
D	
	79
4.00	
rs / 82	

4	REVI	ERSIBLE ENZYME INHIBITION	61
	4.1	Competitive Inhibition / 61	
	4.2	Uncompetitive Inhibition / 62	
	4.3	Linear Mixed Inhibition / 63	
	4.4	Noncompetitive Inhibition / 64	
	4.5	Applications / 65	
		4.5.1 Inhibition of Fumarase by Succinate / 65	
		4.5.2 Inhibition of Pancreatic Carboxypeptidase A by β-Phenylpropionate / 67	
		4.5.3 Alternative Strategies / 69	
5	IRRE	VERSIBLE ENZYME INHIBITION	70
	5.1	Simple Irreversible Inhibition / 72	
	5.2	Simple Irreversible Inhibition in the Presence of Substrate / 73	
	5.3	Time-Dependent Simple Irreversible Inhibition / 75	
	5.4	Time-Dependent Simple Irreversible Inhibition in the Presence of Substrate / 76	
,	5.5	Differentiation Between Time-Dependent and Time-Independent Inhibition / 78	
6	_	EPENDENCE OF ENZYME-CATALYZED CTIONS	79
	6.1	The Model / 79	
	6.2	pH Dependence of the Catalytic Parameters / 82	
	6.3	New Method of Determining pK Values of Catalytically Relevant Functional Groups / 84	
7	TWO	-SUBSTRATE REACTIONS	90
	7.1	Random-Sequential Bi Bi Mechanism / 91	
		7.1.1 Constant [A] / 93	
		7.1.2 Constant [B] / 93	
	7.2	Ordered-Sequential Bi Bi Mechanism / 95	
		7.2.1 Constant [B] / 95	

		7.2.2 Constant [A] / 96		
		7.2.3 Order of Substrate Binding / 97		
	7.3 Ping-Pong Bi Bi Mechanism / 98			
		7.3.1 Constant [B] / 99		
		7.3.2 Constant [A] / 99		
	7.4	Differentiation Between Mechanisms / 100		
8	MUL	TISITE AND COOPERATIVE ENZYMES	102	
	8.1	Sequential Interaction Model / 103		
		8.1.1 Basic Postulates / 103		
		8.1.2 Interaction Factors / 105		
		8.1.3 Microscopic versus Macroscopic Dissociation Constants / 106		
		8.1.4 Generalization of the Model / 107		
	8.2	Concerted Transition or Symmetry Model / 109		
	8.3	Application / 114		
	8.4	Reality Check / 115		
9	IMMOBILIZED ENZYMES			
	9.1	Batch Reactors / 116		
	9.2	Plug-Flow Reactors / 118		
	9.3	Continuous-Stirred Reactors / 119		
10	INTE	RFACIAL ENZYMES	12 ⁻	
	10.1	The Model / 122		
		10.1.1 Interfacial Binding / 122		
		10.1.2 Interfacial Catalysis / 123		
	10.2	Determination of Interfacial Area per Unit Volume / 125		
	10.3	Determination of Saturation Interfacial Enzyme Coverage / 127		
11	TRA	NSIENT PHASES OF ENZYMATIC REACTIONS	129	
	11.1	Rapid Reaction Techniques / 130		
	11.2	Reaction Mechanisms / 132		

		11.2.1 Early Stages of the Reaction / 134	
		11.2.2 Late Stages of the Reaction / 135	
	11.3	Relaxation Techniques / 135	
12	CHA	RACTERIZATION OF ENZYME STABILITY	140
	12.1	Kinetic Treatment / 140	
		12.1.1 The Model / 140	
		12.1.2 Half-Life / 142	
		12.1.3 Decimal Reduction Time / 143	
		12.1.4 Energy of Activation / 144	
		12.1.5 Z Value / 145	
	12.2	Thermodynamic Treatment / 146	
	12.3	Example / 150	
		12.3.1 Thermodynamic Characterization of Stability / 151	
•		12.3.2 Kinetic Characterization of Stability / 156	
13	MECHANISM-BASED INHIBITION Leslie J. Copp		
	13.1	Alternate Substrate Inhibition / 159	
	13.2	Suicide Inhibition / 163	
	13.3	Examples / 169	
		13.3.1 Alternative Substrate Inhibition / 169	
		13.3.2 Suicide Inhibition / 170	
14		TING KINETIC PRINCIPLES INTO PRACTICE Parkin	174
	14.1	Were Initial Velocities Measured? / 175	
	14.2	Does the Michaelis-Menten Model Fit? / 177	
	14.3	What Does the Original [S] versus Velocity Plot Look Like? / 179	
	14.4	Was the Appropriate [S] Range Used? / 181	
	14.5	Is There Consistency Working Within the Context of a Kinetic Model? / 184	
	14.6	Conclusions / 191	

15	USE OF ENZYME KINETIC DATA IN THE STUDY OF STRUCTURE-FUNCTION RELATIONSHIPS OF PROTEINS Takuji Tanaka and Rickey Y. Yada		
	15.1	Are Proteins Expressed Using Various Microbial Systems Similar to the Native Proteins? / 193	
	15.2	What Is the Mechanism of Conversion of a Zymogen to an Active Enzyme? / 195	
	15.3	What Role Does the Prosegment Play in the Activation and Structure-Function of the Active Enzyme? / 198	
	15.4	What Role Do Specific Structures and/or Residues Play in the Structure-Function of Enzymes? / 202	
	15.5	Can Mutations be Made to Stabilize the Structure of an Enzyme to Environmental Conditions? / 205	
		15.5.1 Charge Distribution / 205	
		15.5.2 N-Frag Mutant / 208	
		15.5.3 Disulfide Linkages / 210	
	15.6	Conclusions / 212	
	15.7	Abbreviations Used for the Mutation Research / 213	
ВІВ	LIOGF	RAPHY	217
	Books / 217		
	Select	ion of Classic Papers / 218	
IND	ΕX	. .	221