TABLE OF CONTENTS

Author's Foreword vii
Preface ix
Acknowledgments xi

1. Introduction 1
 1.1 Exordium 1
 1.2 Historical Background 2
 1.3 Technical Advances 3
 1.4 Outline 5
 Chapter 1 References 7

2. Theoretical Models of Nonneutral Plasma 15
 2.1 Introduction 15
 2.2 Kinetic Description 17
 2.3 Macroscopic Fluid Description 22
 2.4 Conservation Relations 26
 2.5 Discrete Particle Effects 29
 2.6 Gravitational Analogue 35
 Chapter 2 References 35

3. Fundamental Properties of Nonneutral Plasma 39
 3.1 Cold-Fluid Equilibrium Rotation 39
 3.2 Single-Particle Trajectories 47
 3.3 Thermal Equilibrium 52
 3.4 Debye Shielding 59
 3.5 Spontaneous Emission from a Test Electron 61
 3.6 Strongly Coupled Nonneutral Plasma 65
 Chapter 3 References 75

xliii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Kinetic Equilibrium and Stability Properties</td>
<td></td>
</tr>
<tr>
<td>4.1 Equilibrium Vlasov–Maxwell Equations</td>
<td></td>
</tr>
<tr>
<td>for Axisymmetric Nonneutral Plasma</td>
<td>79</td>
</tr>
<tr>
<td>4.1.1 Axisymmetric Confinement Geometries</td>
<td>80</td>
</tr>
<tr>
<td>4.1.2 Nonneutral Plasma Column</td>
<td>84</td>
</tr>
<tr>
<td>4.1.3 Axially Confined Equilibria</td>
<td>88</td>
</tr>
<tr>
<td>4.2 Nonrelativistic Kinetic Equilibria</td>
<td>90</td>
</tr>
<tr>
<td>4.2.1 Rigid-Rotor Vlasov Equilibria</td>
<td>91</td>
</tr>
<tr>
<td>4.2.2 Density Inversion Theorem</td>
<td>97</td>
</tr>
<tr>
<td>4.2.3 Uniform-Density Plasma Column</td>
<td>99</td>
</tr>
<tr>
<td>4.2.4 Annular Electron Layer</td>
<td>102</td>
</tr>
<tr>
<td>4.3 Axially-Confined Kinetic Equilibria</td>
<td>109</td>
</tr>
<tr>
<td>4.3.1 Penning-Trap and Segmented Cylinder Equilibria</td>
<td>110</td>
</tr>
<tr>
<td>4.3.2 Mirror-Confined Electron Layer</td>
<td>117</td>
</tr>
<tr>
<td>4.4 Intense Relativistic Electron Beam Equilibria</td>
<td>122</td>
</tr>
<tr>
<td>4.5 Kinetic Stability Theorem for Nonneutral Plasma</td>
<td>130</td>
</tr>
<tr>
<td>4.6 Kinetic Confinement Theorem for Nonneutral Plasma</td>
<td>137</td>
</tr>
<tr>
<td>4.7 Electrostatic Eigenvalue Equation</td>
<td>143</td>
</tr>
<tr>
<td>4.8 Dispersion Relation for Body-Wave Perturbations</td>
<td>149</td>
</tr>
<tr>
<td>4.8.1 Electrostatic Dispersion Relation</td>
<td>149</td>
</tr>
<tr>
<td>4.8.2 Examples of Kinetic Waves and Instabilities</td>
<td>155</td>
</tr>
<tr>
<td>4.8.3 Dispersion Relation for Transverse Electromagnetic Waves</td>
<td>162</td>
</tr>
<tr>
<td>4.9 Dispersion Relation for Flute Perturbations</td>
<td>168</td>
</tr>
<tr>
<td>4.10 Kinetic Equilibrium and Stability Properties of the Modified Betatron</td>
<td>179</td>
</tr>
<tr>
<td>4.10.1 Introduction and Assumptions</td>
<td>179</td>
</tr>
<tr>
<td>4.10.2 Self-Consistent Vlasov Equilibrium</td>
<td>184</td>
</tr>
<tr>
<td>4.10.3 Linearized Vlasov–Maxwell Equations</td>
<td>195</td>
</tr>
<tr>
<td>4.10.3 Negative-Mass and Surface-Kink Instabilities</td>
<td>204</td>
</tr>
<tr>
<td>Chapter 4 References</td>
<td>212</td>
</tr>
<tr>
<td>5. Macroscopic Equilibrium and Stability Properties</td>
<td>221</td>
</tr>
<tr>
<td>5.1 Equilibrium Force Balance Equation</td>
<td>222</td>
</tr>
<tr>
<td>5.2 Examples of Macroscopic Equilibria</td>
<td>225</td>
</tr>
<tr>
<td>5.2.1 Nonrelativistic Nonneutral Plasma Column</td>
<td>226</td>
</tr>
<tr>
<td>5.2.2 Relativistic Diamagnetic Equilibria</td>
<td>228</td>
</tr>
</tbody>
</table>
Table of Contents

5.2.3 Relativistic Beam–Plasma Equilibria ... 233
5.2.4 Bennett Pinch Equilibrium ... 236

5.3 Electrostatic Eigenvalue Equation ... 240

5.4 Dispersion Relation for Uniform-Density Plasma Column 243

5.5 Nonneutral Plasma-Filled Waveguide ... 248
 5.5.1 Electrostatic Dispersion Relation .. 248
 5.5.2 Trivelpiece–Gould Modes in a Pure Ion Plasma 249
 5.5.3 Modified Two-Stream Instability ... 253

5.6 Stability Properties for Flute Perturbations 257
 5.6.1 Electrostatic Dispersion Relation .. 257
 5.6.2 Stable Oscillations .. 259
 5.6.3 Ion Resonance Instability ... 260

5.7 Two-Stream Instabilities in Relativistic Beam–Plasma Systems ... 265
 5.7.1 Electrostatic Dispersion Relation .. 265
 5.7.2 Beam–Plasma Filled Waveguide ... 267
 5.7.3 Thin-Beam Limit .. 269

5.8 Electromagnetic Filamentation Instability ... 271
 5.8.1 Ordinary-Mode Dispersion Relation .. 272
 5.8.2 Filamentation Instability ... 275

5.9 Equilibrium and Collective Oscillation Properties of Two-Dimensional Nonneutral Plasma 276
 5.9.1 Two-Dimensional Disk Equilibrium .. 278
 5.9.2 Normal Modes of Oscillation ... 280

Chapter 5 References ... 284

6. The Diocotron Instability .. 289

6.1 Nonrelativistic Guiding-Center Model .. 290

6.2 Electrostatic Stability Theorem ... 292

6.3 Linear Stability Properties ... 295
 6.3.1 Electrostatic Eigenvalue Equation .. 295
 6.3.2 Diocotron Instability for an Annular Electron Layer 297
 6.3.3 Stable Oscillations for $\ell = 1$ and Arbitrary Density Profile 305

6.4 Experimental Results ... 306

6.5 Quasilinear Evolution .. 312
 6.5.1 Theoretical Model .. 312
Table of Contents

6.5.2 Quasilinear Kinetic Equations .. 315
6.5.3 Stabilization Process .. 319
6.6 Resonant Diocotron Instability ... 323
 6.6.1 Instability Growth Rate ... 324
 6.6.2 Quasilinear Stabilization Process 327
6.7 Influence of Electromagnetic and Relativistic Effects 330
Chapter 6 References .. 340

7. Coherent Electromagnetic Wave Generation by the
 Cyclotron Maser and Free Electron Laser Instabilities 345
 7.1 Introduction .. 345
 7.2 Cyclotron Maser Instability ... 347
 7.2.1 Stability Properties for a Tenuous Electron Beam 348
 7.2.2 Influence of Intense Equilibrium Self Fields 355
 7.3 Cyclotron Maser Instability for an Annular Electron Beam 365
 7.4 High-Power Step-Tunable Gyrotron Experiments 373
 7.5 Free Electron Laser Instability 375
 7.5.1 Introduction ... 375
 7.5.2 Spontaneous Emission from a Test Electron in a Helical
 Wiggler Magnetic Field .. 377
 7.5.3 Free Electron Laser Oscillator Experiments 381
 7.6 Kinetic Description of the Free Electron Laser Instability 383
 7.6.1 Theoretical Model .. 383
 7.6.2 Kinetic Dispersion Relation 386
 7.7 Cold-Beam Stability Properties 392
 7.7.1 Linear Dispersion Relation 392
 7.7.2 Conditions for Free Electron Laser Interaction 394
 7.7.3 Tunable Free Electron Laser Experiments 395
 7.7.4 Analysis of the Full Dispersion Relation 397
 7.7.5 Compton-Regime Approximation 399
 7.7.6 Raman-Regime Approximation 402
 7.8 Warm-Beam Compton-Regime Stability Properties 404
 7.9 Nonlinear Evolution for Multimode Excitation 412
 7.10 Sideband Instability .. 419
 7.10.1 Nonlinear Wave and Orbit Equations 420
 7.10.2 Macroclump Model of the Sideband Instability 428
 7.10.3 Analysis of the Sideband Instability 432
Table of Contents

7.10.4 Experimental Results 437
7.11 Harmonic Generation in a Planar Wiggler Free Electron Laser 439
7.12 High-Gain Free Electron Laser Amplifier Experiments 446
Chapter 7 References 449

8.1 Introduction 461
8.2 Child–Langmuir Flow 463
 8.2.1 Nonrelativistic Planar Diode 463
 8.2.2 Relativistic Planar Diode 469
8.3 Magnetically Insulated Brillouin Flow 473
 8.3.1 Nonrelativistic Planar Flow 473
 8.3.2 Nonrelativistic Cylindrical Flow 480
 8.3.3 Relativistic Planar Flow 485
8.4 Magnetically Insulated Ion Diodes 491
8.5 Magnetron Instability for Magnetically Insulated Electron Flow 497
 8.5.1 Extraordinary-Mode Eigenvalue Equation 497
 8.5.2 Linear Growth Properties 503
8.6 Multiresonator Magnetron Experiments 511
8.7 Ion Resonance and Transit Time Instabilities in Magnetically Insulated Ion Diodes 515
8.8 Applied-B Diodes with Virtual Cathode 521
 8.8.1 Theoretical Model and Basic Equations 523
 8.8.2 Solution for Uniform-Density Electron Layer 525
 8.8.3 Ion Current Enhancement at Peak Diode Power 529
Chapter 8 References 532

9. Propagation and Stability of Intense Charged Particle Beams in a Solenoidal Focusing Field 539
9.1 Introduction 539
9.2 Propagation of Intense Nonneutral Electron Beams 540
 9.2.1 Envelope Equation for Beam Propagation 541
 9.2.2 Space-Charge-Limiting Current 547
 9.2.3 Limiting Current in an Infinitely Long Drift Space 552
Table of Contents

9.2.4 Limiting Current in a One-Dimensional Drift Space 555
9.2.5 Laminar Flow Equilibria in an Infinitely Long Drift Space 559

9.3 Stability of Nonneutral Electron Flow in a One-Dimensional Drift Space 569

9.3.1 Review of Nonrelativistic Equilibrium Flow 570
9.3.2 Linearized Cold-Fluid–Poisson Equations 572
9.3.3 Lagrangian Representation 573
9.3.4 Solution to the Eigenvalue Equation 575
9.3.5 Analysis of Stability Properties 579

9.4 Stability of Intense Nonneutral Ion and Electron Beams 583

9.4.1 Theoretical Model and Assumptions 584
9.4.2 Kapchinskij–Vladimirskij Beam Equilibrium 588
9.4.3 Linearized Vlasov–Maxwell Equations 594
9.4.4 Solution to the Eigenvalue Equation 599
9.4.5 Transverse Stability Properties in a Solenoidal Focusing Field 605
9.4.6 Transverse Stability Properties in a Quadrupole Focusing Field 610

9.5 Resistive Hose Instability for Intense Electron Beam Propagation Through a Background Plasma 615

9.5.1 Theoretical Model and Assumptions 615
9.5.2 Equilibrium Properties 618
9.5.3 Kinetic Eigenvalue Equation for \(\ell = 1 \) Perturbations 623
 Resistive Hose Instability for Sharp-Boundary Density Profile 629
9.5.5 Resistive Hose Instability for a Diffuse Density Profile 637

9.6 Resistive Sausage and Hollowing Instabilities for Intense Electron Beam Propagation Through a Background Plasma 639

9.6.1 Theoretical Model and Assumptions 640
9.6.2 Kinetic Eigenvalue Equation for Azimuthally Symmetric Perturbations 643
9.6.3 Resistive Sausage Instability (\(n = 1 \)) 646
9.6.4 Resistive Hollowing Instability (\(n = 2 \)) 650

Chapter 9 References 653
Table of Contents

10. Propagation and Stability of Intense Charged Particle Beams in an Alternating-Gradient Focusing Field

10.1 Introduction 659

10.2 Alternating-Gradient Field Configuration 662

10.3 Equations of Motion in the Paraxial Approximation 666

10.4 Orbit and Envelope Equations for a Periodic Quadrupole Field

10.4.1 Particle Orbit Equations 669

10.4.2 Beam Envelope Equations 672

10.5 Orbit and Envelope Equations for a Solenoidal Focusing Field

10.5.1 Particle Orbit Equations 673

10.5.2 Beam Envelope Equations 676

10.5.3 Beam Radius and Current for a Matched Beam 676

10.5.4 Phase Advance σ 678

10.6 Average Focusing Force and Phase Advance for a Periodic Quadrupole Field

10.6.1 Envelope Equations for Small-Amplitude Modulation 680

10.6.2 Phase Advance σ 682

10.6.3 Average Quadrupole Focusing Force 688

10.6.4 Beam Radius and Current for a Matched Beam 689

10.7 Hamiltonian Formulation and Relationship to Kapchinskij-Vladimirskij Distribution Function

10.7.1 Hamiltonian Formulation 690

10.7.2 Kapchinskij-Vladimirskij Distribution Function 691

10.7.3 Definition of Statistical Average and RMS Emittance 694

10.8 Transverse Stability of the Kapchinskij-Vladimirskij Distribution Function

10.8.1 Linearized Vlasov-Poisson Equations 699

10.8.2 Transverse Stability Properties 702

10.8.3 Generalization of the Eigenvalue Equation in the Low-Density Regime 707
Table of Contents

10.9 Emittance Growth
 10.9.1 Instability-Induced Emittance Growth 711
 10.9.2 Emittance Growth Caused by Charge 713
 Nonuniformity

Chapter 10 References 717

Appendix A. Solution to the Eigenvalue Equation for Longitudinal Stability of the Modified Betatron 721

Index 728