

Contents

PREFACE		VII	
AC.	ACKNOWLEDGEMENTS		
PAI	RT 1		
BA.	SIC INTERACTIONS BETWEEN THE ROCK MASS AND THE TBM	i	
1.	Introduction	3	
-2.	Some basic TBM designs	4	
3.	Summary of common geotechnical problems	7	
4.	The TBM excavation disturbed zone	9	
5.	Basic factors affecting penetration rate	12	
6.	Penetration rate and thrust per cutter	19	
7.	The possible influence of stress and strength ratios	23	
8.	Basic mechanism of chip formation with roller cutters	26	
9.	Tensile strength and its anisotropy	28	
10.	Penetration rate and fabric anisotropy	30	
11.	Penetration rate, joint spacing and joint character	33	
PAI	RT 2		
Q, (Q _{TBM} AND ROCK MASS VARIABILITY		
12.	TBM performance and rock mass classification	39	
13.	TBM performance and Q-system parameters	45	
14,	TBM performance and the initial requirements for ' Q_{TBM} '	49	
15.	The law of decelerating advance rates	51	
16.	Utilisation and its decay with time	56	
17.	Unexpected events and their Q-values	57	
18.	Water inflows in TBM driven tunnels	63	
19.	Consequences of limited stand-up time in TBM tunnels	65	
20.	The relationship between PR, AR and Q_{TBM}	70	

VI Contents

21.	Rock mass variability and its effect on predicted performance	74
22.	Fine-tuning Q_{TBM} for anisotropy	7 7
23.	Cutter wear and its effect on PR and AR	81
24.	Effect of porosity and quartz content on gradient m and PR	86
	Tunnel size effects	88
	Boring in exceptionally tough, high-stress conditions	91
	Revisiting cutter force effects	95
28.	Predicting advance rates in faulted rock	99
PAF	RT 3	
LO	GGING, TUNNEL SUPPORT, PROBING AND DESIGN VERIF	ICATION
29.	TBM Q-logging and tunnel scale effects	107
30.	Rock support methods commonly used in TBM tunnels	114
31.	Some support design details for TBM tunnels	118
32.	Probing and convergence measurement	123
33.	Probing and seismic or sonic logging	129
34.	Verifying TBM support classes with numerical models	133
35.	Logging rock quality and support needs	138
36.	TBM or drill-and-blast excavation?	142
	Conclusions	147
APPENDIX		151
Α1	Q-method of rock mass classification	151
A2	O _{TBM} – the final version of Figure 44	154
A3	Input data summary for estimating PR and AR using Q_{TBM}	154
	Worked example	150
RE	FERENCES	161
INDEX		