HAMN REWETHER

Human GENETICS

Concepts and Applications

Ricki Lewis

Contents

About the Author iv List of Boxes vi Preface xiii

puri one

Chapter 1

Overview of Genetics 1

- 1.1 A Look Ahead 2
- 1.2 The Language of Genetics

 Levels of Genetics: From
 DNA to Populations 5
 A Case Study: Inherited
 Sensitivity to Benzene
 Exposure 7
 Genes Do Not Usually
 Function Alone 7
 Geneticists Use Statistics to
 Represent Risks 8
- 1.3 Applications of Genetics 9
 Establishing Identity—From Forensics to Rewriting History 9
 Health Care—Genetic Diseases Differ from Other Diseases 10

In Their Own Words: Living with Hemophilia 11

Agriculture 12

Bioethics: From Iceland to GATTACA 13

Chapter 2

Cells 17

- 2.1 The Components of Cells 18
 Chemical Constituents of
 Cells 18
 Organelles 19
 - Reading 2.1: Inherited Illnesses at the Chemical Level 20
 - The Cell Membrane 25 The Cytoskeleton 26
 - Reading 2.2: Inherited Diseases Caused by Faulty Ion Channels 27
- 2.2 Cell Division and Death 29
 The Cell Cycle 29
 Apoptosis 32
- 2.3 Cell-Cell Interactions 34
 Signal Transduction 34
 Cell Adhesion 34
- 2.4 Stem Cells and Cell Specialization 35
- 2.5 Viruses and Prions—Not Cells, But Infectious 36

A Prion—One Protein that Takes Two Forms 37

Chapter 3

Development 41

- 3.1 The Reproductive System 42
 The Male 42
 The Female 42
- 3.2 Meiosis 44
- 3.3 Gamete Maturation 49Sperm Development 49Oocyte Development 51
- 3.4 Prenatal Development 52
 Fertilization 52
 Early Events—Cleavage and Implantation 52
 The Embryo Forms 54
 Supportive Structures . 54
 On the Matter of Multiples 54
 The Embryo Develops 55
 The Fetus 56
- 3.5 Birth Defects 58
 The Critical Period 58
 Teratogens 59
- 3.6 Maturation and Aging 60
 Adult-Onset Inherited
 Disorders 61
 Accelerated Aging
 Disorders 61
 Is Longevity Inherited? 61
 Bioethics: Considering

Cloning 62

rt two

Chapter 4

Transmission Genetics 67

Mendelian Inheritance 67

4.1 Following the Inheritance of One Gene—Segregation 68

Mendel's Laws Apply to Humans, Too 68 Mendel's Experiments 69 Chromosome Behavior in Meiosis Explains Mendel's Law of Segregation 69 Representing Mendel's Law of Segregation 70

4.2 Mendelian Inheritance in Humans 72

Modes of Inheritance 72

Reading 4.1: It's All in the Genes 74

On the Meaning of Dominance and Recessiveness 75

- 4.3 Following the Inheritance of Two Genes—Independent Assortment 76
- 4.4 Pedigree Analysis 78Pedigrees Then and Now 78Pedigrees Display Mendel's Laws 79

Chapter 5

Extensions and Exceptions to Mendel's Laws 85

5.1 When Gene Expression Appears to Alter Mendelian Ratios 86

Lethal Allele
Combinations 86
Multiple Alleles 86
Different Dominance
Relationships 88
Epistasis—When One Gene
Affects Expression of
Another 89
Penetrance and
Expressivity 90
Pleiotropy—One Gene,
Many Effects 91

Phenocopies—When It's Not in the Genes 91
Genetic Heterogeneity—
More than One Way to Inherit a Trait 92

5.2 Maternal Inheritance and Mitochondrial Genes 93

Mitochondrial Disorders 93 Heteroplasmy Complicates Mitochondrial Inheritance 94

5.3 Linkage 95

Linkage was Discovered in Pea Plants 95 Linkage Maps 96 Examples of Linked Genes in Humans 97 The Evolution of Gene Mapping 98

Chapter 6

Matters of Sex 103

6.1 Sexual Development 104

Sex Chromosomes 104

The Phenotype Forms 105

Gender Identity—Is

Homosexuality
Inherited? 106

6.2 Traits Inherited on Sex Chromosomes 108

X-Linked Recessive Inheritance 108

Reading 6.1: Of Preserved Eyeballs and Duplicated Genes—Color Blindness 110

X-Linked Dominant Inheritance 113

6.3 X Inactivation Evens Out the Sexes 114

6.4 Gender Effects on Phenotype 116

Sex-limited Traits 116 Sex-influenced Traits 116 Genomic Imprinting 116

Chapter 7

Multifactorial and Behavioral Traits 123

7.1 Genes and the Environment Mold Many Traits 124

> Polygenic Traits Are Continuously Varying 124 Fingerprint Patterns, Height, and Eye Color 124 A Closer Look at Skin Color 126

7.2 Methods Used to Investigate
Multifactorial Traits 127

Empiric Risk 127
Heritability—The Genetic
Contribution to a
Multifactorial Trait 128
Adopted Individuals 129
Twins 129

7.3 Some Multifactorial Traits 131

Heart Health 131
Body Weight 133
Intelligence 135
Sleep 136
Schizophrenia 136
Alcoholism 138
Searching for Genes that
Affect Behavior 138

Bioethics: Blaming Genes 139

DNA and Chromosomes 143

Chapter 8

DNA Structure and Replication 143

8.1 Experiments Identify and Describe the Genetic Material 144

DNA Is the Hereditary
Molecule 144
DNA Is the Hereditary
Molecule—And Protein Is
Not 144
Deciphering the Structure of
DNA 145

- 8.2 DNA Structure 147
- 8.3 DNA Replication— Maintaining Genetic Information 151

Replication is Semiconservative 151 Steps and Participants in DNA Replication 152

8.4 PCR—Directing DNA Replication 154

Reading 8.1: DNA Makes History 156

8.5 DNA Repair 157

Three Types of DNA Repair 157 DNA Repair Disorders 158

Chapter 9

Gene Action 163

- 9.1 Control of Transcription IsComplex 164
- 9.2 Transcription—The Link
 Between Gene and Protein 164

RNA Structure 164
The Events of
Transcription 166
Processing RNA 168

9.3 Translation—Expressing Genetic Information 169

Reading 9.1: RNA— Possibly the Most Important Molecule in Life 170

Deciphering the Genetic Code 172 Building a Protein 174 Protein Folding 176

Chapter 10

Gene Mutation 181

10.1 Mutations Can Alter
Proteins—Three Examples 182

The Beta Globin Gene 182
Disorders of Orderly
Collagen 184
A Mutation that Causes EarlyOnset Alzheimer Disease 185

10.2 Causes of Mutation 186

Spontaneous Mutation 186 Induced Mutations 188 Natural Exposure to Mutagens 189

10.3 Types of Mutations 190

Point Mutations 190
Deletions and Insertions Can
Cause Frameshifts 191
Pseudogenes Are Remnants
of Genes Past 192
Movable Genes 192
Triplet Repeats and
Expanding Genes 192

Reading 10.1: Fragile X Syndrome—The First of the Triplet Repeat Disorders 194 10.4 The Importance of a Mutation's Position in the Gene 196

Globin Variants 196 Inherited Susceptibility to Prion Disorders 196

10.5 Factors that Lessen the Effects of Mutation 197

Chapter 11

Chromosomes 201

11.1 Portrait of a Chromosome 202

11.2 Visualizing Chromosomes 203

Obtaining Cells for Chromosome Study 203
Preparing Cells for Chromosome
Observation 206
11.3 Abnormal Chromosome

Number 209 Polyploidy 209

Aneuploidy 209

Reading 11.1: HACs— Human Artificial Chromosomes 210

11.4 Abnormal Chromosome Structure 215

> In Their Own Words: A Personal Look at Klinefelter Syndrome 215

Deletions and
Duplications 216
Translocations 217

In Their Own Words: Ashley's Message of Hope 217

Inversions 219
Isochromosomes and Ring
Chromosomes 220

11.5 Uniparental Disomy—Two Genetic Contributions from One Parent 221

Population Genetics 227

Chapter 12

When Allele Frequencies Stay Constant 227

12.1 The Importance of KnowingAllele Frequencies 228

12.2 When Allele FrequenciesStay Constant—Hardy-WeinbergEquilibrium 228

12.3 Practical Applications ofHardy-Weinberg Equilibrium 231

12.4 DNA Fingerprinting—A Practical Test of Hardy-Weinberg Assumptions 232

DNA Patterns Distinguish Individuals 232

Reading 12.1 DNA
Fingerprinting Relies on
Molecular Genetics and
Population Genetics 234

Population Statistics Are Used to Interpret DNA Fingerprints 236

Chapter 13

Changing Allele Frequencies 241

13.1 Nonrandom Mating 242

13.2 Migration 243

Historical Clues 243 Geographical and Linguistic Clues 244

13.3 Genetic Drift 244

The Founder Effect 244
Population Bottlenecks 246

13.4 Mutation 247

13.5 Natural Selection 248

Reading 13.1 Antibiotic Resistance—Stemming a Biological Arms Race 248

Tuberculosis Ups and Downs and Ups 249 Evolving HIV 250 Balanced Polymorphism 250

13.2 Dogs and Cats: Products of Artificial Selection 255

13.6 Gene Genealogy 256

PKU Revisited 256 CF Revisited 257

Chapter 14

Human Origins and Evolution 261

14.1 Human Origins 262

The Australopithecines 263

Homo 264

Modern Humans 265

14.2 Molecular Evolution 266

Comparing Genomes 266
Comparing
Chromosomes 266
Comparing Protein
Sequences 266
Comparing DNA
Sequences 268

14.3 Molecular Clocks 270

Neanderthals Revisited 270 Choosing Clues 271

14.4 Eugenics 274

Eugenics Early in the Twentieth Century 274

Eugenics in the 1990s 275

Reading 14.1: Two Views of Neural Tube Defects 276

Bioethics: Beryllium Sensitivity Screening 277

part five Immunity and Cancer 281

Chapter 15

Genetics of Immunity 281

15.1 The Importance of Cell Surfaces 282

> Blood Groups 282 The Human Leukocyte Antigens 284

15.2 The Immune System 285
Physical Barriers and the Innate
Immune Response 285
The Acquired Immune

15.3 Abnormal Immunity 292
Inherited Immune
Deficiencies 292
Acquired Immune Deficiency
Syndrome 292
Autoimmunity 294

Allergies 294

Response 287

15.4 Altering Immune Function 295

Vaccines 295 Immunotherapy 297 Transplantation 297

Bioethics: Pig Parts 300

Chapter 16

The Genetics of Cancer 305

16.1 Cancer as a Genetic

Disorder 306

Cancer—A Loss of Cell Cycle Control 307 Inherited versus Sporadic Cancer 308

16.2 Characteristics of CancerCells 308

16.3 Genes that Cause Cancer 310

> Oncogenes 311 Tumor Suppressors 313

Reading 16.1: Retinoblastoma—The Two-Hit Hypothesis 314

16.4 A Series of Genetic Changes Causes Some Cancers 317

> A Rapidly Growing Brain Tumor 317 Colon Cancer 318

16.5 Cancer Prevention and Treatment 319

Diet-Cancer Associations 319 Treating Cancer 320

Reading 16.2: Cancer Death Rates in Different U.S. Locales 320

part six Genetic Technology 325

Chapter 17

Genetic Engineering 325

17.1 Recombinant DNA Technology 326

> Constructing Recombinant DNA Molecules 327 Selecting Recombinant DNA Molecules 329

Isolating the Gene of Interest 330 Applications of Recombinant DNA Technology 331

17.2 Transgenic Organisms 332

Delivering DNA 332 Transgenic Pharming from Milk and Semen 333

17.3 Gene Targeting 336

Gene-Targeted Mice as Models 337

Bioethics: The Ethics of Using a Recombinant Drug: EPO 338

When Knockouts Are Normal 339

Chapter 18

Gene Therapy and Genetic Counseling 343

18.1 Gene Therapy Successes and Setbacks 344

Adenosine Deaminase
Deficiency—Early
Success 344
Ornithine Transcarbamylase
Deficiency—A Setback 345

18.2 The Mechanics of Gene Therapy 346

> Treating the Phenotype 346 Germline Versus Somatic Gene Therapy 347 Sites of Somatic Gene Therapy 347

In Their Own Words: The Good News Genetic Disease: Hereditary Hemochromatosis 349

Gene Delivery 350

18.3 A Closer Look: Treating Sickle Cell Disease 352

18.4 Genetic Screening and Genetic Counseling 354

Genetic Counselors Provide
Diverse Services 354
Scene from a Sickle Cell
Disease Clinic 355
Genetic Counseling
Quandaries and
Challenges 356
Perspective: A Slow Start, But
Great Promise 356

Bioethics: Gene Therapy Fatalities 357

Chapter 19

Agricultural Biotechnology 361

19.1 Traditional Breeding Compared to Biotechnology 363

Similar Steps, Different
Degree of Precision 363
Government Regulation of
Crops 363
Biotechnology Provides
Different Routes to Solving a
Problem 363
19.2 Types of Plant
Manipulations 365

Altering Plants at the Gene Level 365 Altering Plants at the Cellular Level 368

19.3 Release of Genetically Modified Organisms to the Environment 369

> Microcosm Experiments 369 Field Tests 370 Bioremediation 370

19.4 Economic, Ecological, and Evolutionary Concerns 371

Bioethics: The Butterfly that Roared 373

Chapter 20

Reproductive Technologies 377

20.1 New Ways to Make Babies 378

> Grandmother and Mother at the Same Time 378 Midlife Motherhood 378 A Five-Year Wait 378

20.2 Infertility 379

Male Infertility 379
Female Infertility 380

Reading 20.1: Scrutinizing Sperm 380

Infertility Tests 383

20.3 Assisted Reproductive Technologies 384

Donated Sperm—Artificial
Insemination 384
A Donated Uterus—Surrogate
Motherhood 384
In Vitro Fertilization 386
Gamete Intrafallopian
Transfer 387
Oocyte Banking and
Donation 387
Preimplantation Genetic
Screening 388

Bioethics: Technology Too Soon? The Case of ICSI 390

Chapter 21

Genomics 393

21.1 Technology Fuels Genome Sequencing and Genomics 394

> Reading 21.1: The Needlein-a-Haystack Search for the Huntington Disease Gene 396

The Sanger Method of DNA Sequencing 398 Computers Coax Meaning from Genes 399

21.2 The History of the Human Genome Project \(400 \)

21.3 Using Human Genome Information 402

DNA Microarrays Will Revolutionize Medicine 402 Pharmacogenomics 402

21.4 Genome InformationAnswers and RaisesQuestions 403

The Definition of a Gene 403 Nonhuman Genome Projects 404

Epilogue: Genome Information Will Affect You 405

> In Their Own Words: Genomics: The New Paradigm 406

Answers	A-1
Glossary .	G-1
Credits	C-1
Index	I-1