Basic Concepts for Simple and Complex Liquids

Jean-Louis Barrat and Jean-Pierre Hansen

Contents

Pref	Preface pa		
1	An introduction to liquid matter	1	
1.1	Fluid states of simple substances	2	
1.2	From simple to complex fluids	7	
1.3	Exploring the liquid state	15	
1.4	Application 1: excluded and free volume	18	
1.5	Application 2: polymer chains and scale invariance	23	
1.6	Application 3: numerical experiments	28	
	Further reading	35	
I	Thermodynamics, structure and fluctuations		
2	A reminder of thermodynamics	36	
2.1	State variables and thermodynamic equilibrium	36	
2.2	Link with statistical mechanics	42	
2.3	Phase coexistence and interfaces	47	
2.4	Application 1: scaled particle theory	51	
2.5	Application 2: particle insertion	55	
2.6	Application 3: critical micellar concentration	57	
2.7	Application 4: depletion interactions and solvation forces	62	
	Further reading	67	
3	Equilibrium fluctuations	69	
3.1	Gaussian distribution of fluctuations	69	
3.2	Density fluctuations in a one-component system	72	
3.3	Concentration fluctuations in a mixture	74	
3.4	Local order and pair structure	75	
3.5	Link with thermodynamics	81	
3.6	Static linear response	84	
3.7	Application 1: dipole moment fluctuations and dielectric respon	ise 85	

νi

3.8	Application 2: determination of the structure from diffraction	
	experiments	90
3.9	Application 3: form factors of complex objects or molecules	93
3.10	O Application 4: random phase approximation	. 98
	Further reading	106
II	Phase transitions	
4	Mean field approaches	107
4.1	Lattice models and mean field treatment	107
4.2	Landau theory of phase transitions	115
4.3	Application 1: van der Waals theory of condensation	126
4.4	Application 2: Flory-Huggins theory of polymer blends	128
4.5	Application 3: isotropic-nematic transition	131
4.6	Application 4: freezing	136
5	Critical fluctuations and scaling	143
5.1	The correlation length	144
5.2	Fluctuations and dimensionality	148
5.3	Scaling ideas	153
5.4	Application 1: Ginzburg criterion for polymer blends	157
5.5	Application 2: scaling laws for polymer solutions	159
5.6	Application 3: finite size scaling	165
III	Interfaces and inhomogeneous fluids	
6	Macroscopic description of interfaces	167
6.1	Interfacial tension and excess quantities	167
6.2	Geometry of curved surfaces	170
6.3	Wetting phenomena	172
6.4	Capillary pressure and capillary condensation	173
6.5	Disjoining pressure and film stability	176
	Further reading	178
7	The density functional approach	179
7.1	Variational principle	179
7.2	Some approximate functionals	181
7.3	Application 1: the fluid-fluid interface	184
7.4	Application 2: the adsorbed polymer layer	186
7.5	Application 3: self-assembly of copolymers	188
7.6	Application 4: electric double-layers	193
7.7	Application 5: colloid stability	203
	Further reading	212

Contents	vii

8	Curvature and fluctuations	213
8.1	Fluctuations of interfaces and capillary waves	213
8.2	Membranes and curvature moduli	215
8.3	Fluctuations of membranes	217
8.4	Steric interactions between membranes	218
	Further reading	219
IV	Dynamics	
9	Phenomenological description of transport processes	220
9.1	Fluxes, affinities and transport coefficients	220
9.2	Application 1: the diffusion equation	221
9.3	Application 2: spinodal decomposition	224
	Further reading	227
10	Brownian motion, diffusion and the Langevin equation	228
10.1	The Langevin equation	228
10.2	The Fokker-Planck description	231
10.3	Application 1: rotational diffusion	235
10.4	Application 2: polymer dynamics, Rouse and reptation models	239
10.5	Application 3: barrier crossing	246
10.6	Application 4: classical nucleation theory	251
	Further reading	255
11	Response and correlation functions	257
11.1	Probing dynamical properties at equilibrium	257
11.2	- · · · · · · · · · · · · · · · · · · ·	258
11.3		259
11.4	Fluctuation-dissipation theorem	261
11.5	Application 1: collective modes	263
11.6		267
11.7	Application 3: pulsed field gradient nuclear magnetic resonance	270
	Further reading	272
12	Slow relaxations	273
12.1	Memory and viscoelastic effects	273
12.2	Coupling to hydrodynamic modes and long time tails	275
12.3	Critical slowing down	277
12.4	"	280
	Further reading	292
Inde	x	294