Biochemistry FOURTH EDITION

Campbell / Farrell

Contents

PART ONE

Interview with Sean Decatur 1

An Introduction to Biochemistry 3	
Chapter 1	
Biochemistry and the Organization of Cells 4	
1.1 Some Basic Themes 5	
1.2 Biomolecules 6	
1.3 Origins of Life 8	
1.4 Prokaryotes and Eukaryotes: Differences in Levels of Organization 16	
1.5 Prokaryotic Cells 17	
1.6 Eukaryotic Cells 18	
1.7 Five Kingdoms—Three Domains 23	
1.8 Common Ground for All Cells 26	
1.9 How Cells Use Energy 28	
Chapter 2	
Water: The Solvent for Biochemical Reactions 33	
2.1 The Polar Nature of the Water Molecule 34	
2.2 The Hydrogen Bond 37	
2.3 Acids and Bases 42	
2.4 The Self-Dissociation of Water and the pH Scale 42	
2.5 Titration Curves 44	
2.6 Buffers 46	
Interview with Lila Gierasch 59	
PART TWO	
Components of Cells: Structure and Function 61	
Chapter 3	
Amino Acids and Peptides 62	
3.1 Amino Acids—Their General Formula and Three-Dimensional Structure 63	
3.2 The Structures and Properties of the Individual Amino Acids 64	
3.3 Titration Curves of the Amino Acids 70	
3.4 The Peptide Bond 74	
3.5 Some Small Peptides of Physiological Interest 77	
Chapter 4	
The Three-Dimensional Structure of Proteins 85	
4.1 The Structure of Proteins Determines Their Function 86	
4.2 Primary Structure of Proteins 87	
4.3 Secondary Structure of Proteins 87	

- 4.4 Tertiary Structure of Proteins 96
- 4.5 Quaternary Structure of Proteins 104

Interchapter A

Protein Purification and Characterization Techniques 116

- A.1 Purification of Proteins 117
- A.2 Column Chromatography 118
- A.3 Electrophoresis 123
- A.4 Determining the Primary Structure of a Protein 125

Chapter 5

The Behavior of Proteins: Enzymes 134

- 5.1 Enzymes Are Biological Catalysts 135
- 5.2 Catalysis: Kinetic Versus Thermodynamic Aspects of Reactions 135
- 5.3 Enzyme Kinetics 137
- 5.4 Formation of an Enzyme-Substrate Complex Is the First Step in Enzymatic Reactions 139
- 5.5 Two Examples of Enzyme-Catalyzed Reactions 141
- 5.6 The Michaelis—Menten Approach to Enzyme Kinetics 143
- 5.7 Inhibition of Enzymatic Reactions 151

Chapter 6

The Behavior of Proteins: Enzymes, Mechanisms, and Control 160

- 6.1 The Michaelis–Menten Model Does Not Describe the Behavior of Allosteric Enzymes 161
- 6.2 Models for the Behavior of Allosteric Enzymes 165
- 6.3 Phosphorylation of Specific Residues Regulates Enzyme Activity 169
- 6.4 Zymogens: The Basis of Another Type of Control Mechanism in Enzyme Action 170
- 6.5 Active Site Events in Enzymes: A Look at Reaction Mechanisms 172
- 6.6 Types of Catalytic Mechanisms 177
- 6.7 The Active Site and Transition States 182
- 6.8 Coenzymes 185

Chapter 7

Lipids and Proteins Are Associated in Biological Membranes 190

- 7.1 The Definition of a Lipid 191
- 7.2 The Chemical Natures of the Lipid Type 191
- 7.3 The Nature of Biological Membranes 200
- 7.4 Membrane Proteins 204
- 7.5 The Fluid Mosaic Model of Membrane Structure 205
- 7.6 Membrane Function: An Introduction 207
- 7.7 Lipid-Soluble Vitamins 212
- 7.8 Prostaglandins and Leukotrienes 218

Interview with Sylvia Daunert 225

PART THREE

The Workings of the Genetic Code 227

Chapter 8

Nucleic Acids: How Structure Conv	eys Information 223
--	---------------------

- 8.1 Levels of Structure in Nucleic Acids 229
- 8.2 The Covalent Structure of Polynucleotides 229
- 8.3 The Structure of DNA 235
- 8.4 Denaturation of DNA 244
- 8.5 The Principal Kinds of RNA and Their Structures 247

Chapter 9

Biosynthesis of Nucleic Acids: Replication 255

- 9.1 The Flow of Genetic Information in the Cell 256
- 9.2 The Replication of DNA: Some General Considerations 257
- 9.3 The DNA Polymerase Reaction 260
- 9.4 DNA Replication Requires the Combined Action of Several Enzymes 263
- 9.5 Proofreading and Repair 266
- 9.6 The Replication of DNA in Eukaryotes 272

Chapter 10

Transcription of the Genetic Code: The Biosynthesis of RNA 280

- 10.1 Transcription in Prokaryotes 281
- 10.2 Regulation of Transcription in Prokaryotes 287
- 10.3 Transcription in Eukaryotes 294
- 10.4 Regulation of Transcription in Eukaryotes 300
- 10.5 Structural Motifs in DNA-Binding Proteins 304
- 10.6 Post-Transcriptional Modification of RNA 308
- 10.7 Ribozymes: RNA as an Enzyme 314

Chapter 11

Protein Synthesis: Translation of the Genetic Message 319

- 11.1 The Process of Translating the Genetic Message 320
- 11.2 The Genetic Code 320
- 11.3 Amino Acid Activation: The Role of Aminoacyl-tRNA Synthetases 326
- 11.4 Translation in Prokaryotes 328
- 11.5 Translation in Eukaryotices 338
- 11.6 Post-Translational Modification of Proteins 342
- 11.7 Protein Degradation 344
- 11.8 Viruses, Cancer, and AIDS 346

Interchapter B

Nucleic Acid Biotechnology Techniques 356

- B.1 Methods for Working with Nucleic Acids 357
- B.2 Restriction Endonucleases: An Important Tool for DNA Research 360
- B.3 Recombinant DNA and Cloning: The Basis of Genetic Engineering 362

B.4 Genetic Engineering: Expression of Foreign Proteins 370
B.5 Gene Therapy 377
B.6 DNA Libraries 382
B.7 The Polymerase Chain Reaction 385
B.8 Site-Directed Mutagenesis 387
B.9 DNA Fingerprinting 389
B.10 Methods for Studying DNA: Protein Interactions 393
B.11 Methods for Studying Transcription 394
B.12 Determining the Base Sequence of Nucleic Acids 397
Conversation with Carl Djerassi 403
PART FOUR
Energetics and Metabolism: Carbohydrates, Lipids,
and Compounds of Nitrogen 405
Chapter 12
The Importance of Energy Changes and Electron Transfer in
Metabolism 406
12.1 Energy and Change 407
12.2 The Criterion for Spontaneity 407
12.3 Standard States and the Standard Free Energy Change 408
12.4 A Modified Standard State for Biochemical Applications 409
12.5 Thermodynamics and Life 410
12.6 Hydrophobic Interactions: A Case Study in Thermodynamics 413
12.7 The Nature of Metabolism 415
12.8 The Nature of Oxidation and Reduction 415
12.9 Coenzymes in Biologically Important Oxidation–Reduction Reactions 417
12.10 Coupling of Production and Use of Energy 420
12.11 Metabolism Proceeds in Stages: The Role of Coenzyme A in Activation
Processes 425
Chapter 13
Carbohydrates 432
13.1 Monosaccharides: Structure and Stereochemistry 433
13.2 Reactions of Monosaccharides 440

- 13.3 Oligosaccharides 447
- 13.4 Polysaccharides 448
- 13.5 Glycoproteins 457

Chapter 14

Glycolysis 462

- 14.1 An Overview of the Glycolytic Pathway 463
- 14.2 Conversion of Glucose to Glyceraldehyde-3-Phosphate 467
- 14.3 Glyceraldehyde-3-Phosphate to Pyruvate 472
- 14.4 Anaerobic Reactions of Pyruvate 480
- 14.5 Energy Considerations in Glycolysis 483

Chapter 15

Storage Mechanisms and	l Control in	Carbohydra	ate Metabolism	488
------------------------	--------------	------------	----------------	-----

- 15.1 Glycogen Metabolism 489
- 15.2 Gluconeogenesis 497
- 15.3 Control Mechanisms in Carbohydrate Metabolism 501
- 15.4 The Pentose Phosphate Pathway 506

Chapter 16

The Citric Acid Cycle 514

- 16.1 The Role of the Citric Acid Cycle in Metabolism 515
- 16.2 Overview of the Citric Acid Cycle 516
- 16.3 Conversion of Pyruvate to Acetyl-CoA 519
- 16.4 Individual Reactions of the Citric Acid Cycle 522
- 16.5 Energetics and Control of the Citric Acid Cycle 529
- 16.6 The Glyoxylate Cycle: A Related Pathway 532
- 16.7 The Citric Acid Cycle in Catabolism 533
- 16.8 The Citric Acid Cycle in Anabolism 534
- 16.9 A Final Note 540

Chapter 17

Electron Transport and Oxidative Phosphorylation 544

- 17.1 The Role of Electron Transport in Metabolism 545
- 17.2 Reduction Potentials 546
- 17.3 Electron Transport from NADH to O₂ Requires Four Membrane-Bound Complexes 550
- 17.4 The Coupling of Oxidation to Phosphorylation 558
- 17.5 The Mechanism of Coupling in Oxidative Phosphorylation 561
- 17.6 Respiratory Inhibitors Block the Flow of Electrons in Electron Transport 565
- 17.7 Shuttle Mechanisms Mediate Transport of Metabolites Between Mitochondria and the Cytosol 568
- 17.8 The ATP Yield from Complete Oxidation of Glucose 569

Chapter 18

Lipid Metabolism 575

- 18.1 The Metabolism of Lipids Provides Pathways for the Generation and Storage of Energy 576
- 18.2 Catabolism of Lipids 576
- 18.3 The Energy Yield from the Oxidation of Fatty Acids 581
- 18.4 Some Additional Reactions in the Oxidation of Fatty Acids 583
- 18.5 The Formation of Ketone Bodies 587
- 18.6 The Anabolism of Fatty Acids 589
- 18.7 The Anabolism of Acylglycerols and Compound Lipids 596
- 18.8 The Anabolism of Cholesterol 601

Chapter 19

Photosynthesis 614

- 19.1 Chloroplasts and Chlorophylls 615
- 19.2 The Light Reactions of Photosynthesis: Photosystems I and II 619
- 19.3 A Proteon Gradient Drives the Production of ATP in Photosynthesis 626
- 19.4 A Comparison of Photosynthesis with and Without Oxygen: Evolutionary Implications 627
- 19.5 The Dark Reactions of Photosynthesis: Path of Carbon 629
- 19.6 An Alternative Pathway for Carbon Dioxide Fixation 635

Chapter 20

The Metabolism of Nitrogen 641

- 20.1 An Overview of Nitrogen Metabolism 642
- 20.2 Nitrogen Fixation 643
- 20.3 Feedback Control: A Unifying Theme in Nitrogen Metabolism 645
- 20.4 The Anabolism of Amino Acids 647
- 20.5 Essential Amino Acids 654
- 20.6 Catabolism of Amino Acids 654
- 20.7 Purine Nucleotide Anabolism 659
- 20.8 Catabolic Reactions of Purine Nucleotides 663
- 20.9 Pyrimidine Nucleotide Metabolism: Anabolism and Catabolism 665
- 20.10 The Reduction of Ribonucleotides to Deoxyribonucleotides 66
- 20.11 The Conversion of dUDP to dTTP 670

Interchapter C

The Anabolism of Nitrogen-Containing Compounds 674

- C.1 Glutamate as a Precursor of Proline and Arginine 675
- C.2 The Aspartate Family 675
- C.3 The Pyruvate Family 676
- C.4 The Aromatic Amino Acids 677
- C.5 Histidine Biosynthesis 679
- C.6 The Anabolism of Porphyrins 683
- C.7 The Anabolic Pathway for IMP 687

Chapter 21

Special Topics: Metabolism in Perspective 690

- 21.1 All Metabolic Pathways Are Related 691
- 21.2 Biochemistry and Nutrition 691
- 21.3 Hormones and Second Messengers 697
- 21.4 Hormonal Control in Metabolism 705
- 21.5 The Immune System: The Body's Defenses 708
- 21.6 Nitric Oxide in Biochemistry: A Case Study in Connections 716

Answers: A-1

Glossary: G-1

Index: I-1