
Lecture Notebook

for Campbell and Farrell's

Biochemistry

Fourth Edition

Mary K. Campbell Shawn O. Farrell

Table of Contents

Image Number	Figure	Description
1-3	1.10	A comparison of (a) an animal cell, (b) a plant cell, and (c) a
		prokaryotic cell
4	Table 1.1	Functional groups of biochemical importance
5	2.9a	Titration of acetic acid with NaOH
6	2.9b	Relative abundance of acetic acid and acetate ion during a titration
7-8	2.11	Titration curve and buffering action
9	Table 2.8	Acid and base forms of some buffers
10	3.1	Amino acid structure
11-14	3.4	Amino acids and their structures
15-16	3.7	Titration curves of amino acids
17	Table 3.1	Common amino acids and their abbreviations
18	Table 3.2	PKa values of common amino acids
19	4.1	Angles of the polypeptide chain
20	4.2	The α -helix
21	4.3	β -pleated sheet
22	4.12	Forces that stabilize tertiary structure in proteins
23	4.18	Denaturation of proteins
24-25	A.5	Gel filtration chromatography
26	A.6	Affinity chromatography
27	A.8	Ion exchange chromatography using a cation exchanger
28	A.13	Strategy for determining the primary structure of a given protein
29	A.18	Sequencing of peptides by the Edman method
30	5.1	Activation energy profiles
31	5.10	Lineweaver-Burk double-reciprocal plot
32	5.12	Lineweaver-Burk double-reciprocal plot for competitive inhibition
33	5.13	Lineweaver-Burk double-reciprocal plot for noncompetitive
		inhibition
34	6.4	Monod-Wyman-Changeux model
35	6.5	Monod-Wyman-Changeux or concerted model
36	6.7	Sequential model of cooperative binding of substrate to allosteric enzyme
37	6.8	Phosphorylation of the sodium/potassium pump
38 .	6.9	Glycogen phosphoryation activity
39-40	6.13	The mechanism of chymotrypsin action
41	7.5	Structures of some phosphoacylglycerols
42	7.8	Ganglioside structures
43	7.11	Lipid bilayer asymmetry
44	7.18	Fluid mosaic model for membrane structure
45	7.24	The sodium-potassium pump
46	7.26	Secondary active transport
47-48	8.4	Commonly occurring nucleotides
49	8.5	A fragment of an RNA chain
50	8.6	A portion of a DNA chain

Image Number	Figure	Description
51	8.7	The double helix
52	8.11	A Z-DNA section in the middle of a B-DNA
53	8.15	A model for the action of bacterial DNA gyrase
54	8.19	Types of RNA
55	9.2	Semiconservative replication
56	9.4	Bi-directional replication of DNA in prokaryotes and eukaryotes
57	9.5	The semidiscontinuous model for DNA replication
58	9.10	General features of the replication fork
59	9.12	The $5' \rightarrow 3'$ exonuclease activity of DNA polymerase I
60	9.16	Base excision repair
61	9.19	Model for the initiation of the DNA replication cycle in eukaryotes
62	10.3	The basic order of events in prokaryotic transcription initiation and
		elongation
63	10.4	Topoisomerases remove supercoils that would form ahead of and
		behind the transcription bubble
64	10.6	Transcription termination by the rho factor
65-66	10.9	The lacI gene produces a protein that represses the lac operon
67	10.12	Basic control mechanisms seen in the expression of genes
68	10.13	The trp operon of E. coli.
69	10.18	The order of events of transcription
70	10.27	Amino acid sequence comparisons of several DNA binding
		proteins
71	10.30	Posttranscriptional modification of tRNA precursor
72	10.34	Splicing of mRNA precursors
73	10.35	Organization of the fast skeletal muscle troponin T gene
74-75	11.3	The filter-binding assay for elucidation of the genetic code
76	11.5	Various base-pairing alternatives
77	11.9	Formation of the N-formylmethionine-tRNA
78	11.12	A summary of the steps in chain elongation
79	11.15	The events in peptide chain termination
80	11.17	Simultaneous protein synthesis on polysomes
81	11.20	The three stages in the initiation of translation in eukaryotic cells
82	11.25	The outcome of infection of cells by simian virus 40 depends on
		the nature of the cells
83	Table 11.1	The genetic code
84	B.4	Hydrolysis of DNA by restriction endonucleases
85	B.5	Restriction endonuclease EcoRI cleaves double-stranded DNA
86	B.6	The cloning of a virus
87	B.8	The cloning of human DNA fragments with a viral vector
88	B.9	Selecting for recombinant DNA in a bacterial plasmid
89	B.12	The pUC series of plasmids
90	B.13	Clone selection via blue/white screening
91	B.15	Synthesis of insulin in humans
92	B.18	Gene therapy in bone marrow cells

Image Number	Figure	Description
93	B.19	Human gene therapy via retroviruses
94	B.23	Steps involved in the construction of a DNA library
95	B.25	Selecting a desired clone from a DNA library
96	B.26	The polymerase chain reaction
97	B.27	The Southern blot
98	B.29	Restriction fragment length polymorphisms
99	B.34	Using a reporter gene
100	12.4	Catabolism and anabolism
101	12.6	NADH and NAD+
102	12.14	Anabolism and catabolism
103	13.2	An-aldose and a ketose
104	13.4	Stereochemical relationships among monosaccharides
105	13.8	A comparison of the Fischer, complete Haworth, and abbreviated
		Haworth structures of α - and β -D-glucose
106	14.1	One molecule of pyruvate is converted to two molecules of
		pyruvate
107	14.2	The pathway of glycolysis
108	14.3	The first phase of glycolysis
109	14.7	The second phase of glycolysis
110	Table 14.1	The reactions of glycolysis and their standard free energy changes
111	15.5	Glycogen phosphorylase activity is subject to allosteric control and
		covalent modification
112	15.6	The pathways of gluconeogenesis and glycolysis
113	15.12	The Cori cycle
114	15.15	The oxidative reactions of the pentose phosphate pathway
115	15.16	The nonoxidative reactions of the pentose phosphate pathway
116	15.17	Relationship between the pentose phosphate pathway and
		glycolysis
117	16.1	The citric acid cycle and catabolism
118	16.3	An overview of the citric acid cycle
119	16.4	The mechanism of the pyruvate dehydrogenase reaction
120	16.7	Control points in the conversion of pyruvate to acetyl-CoA and in
		the citric acid cycle
121	16.8	The glyoxylate cycle
122	16.9	A summary of catabolism
123	16.11	Transfer of the starting materials of glyconeogenesis from the
104	1 < 1 =	mitochondrion to the cytosol
124	16.12	Transfer of the starting materials of lipid anabolism from the
105	1614	mitochondrion to the cytosol
125	16.14	A summary of anabolism
126	Table 16.2	The energetics of conversion of pyruvate to carbon dioxide
127	17.7	Respiratory complexes in the inner mitochondrial membrane
128	17.11	A model for the components of ATP synthase
129	17.13	The creation of a proton gradient in chemiosmotic coupling

Image Number	Figure	Description
130	17.21	The glycerol phosphate shuttle
131	17.22	The malate-aspartate shuttle
132	Table 17.1	Standard reduction potentials for biological half-reactions
133	Table 17.2	Energetics of electron transport reactions
134	Table 17.3	Yield of ATP from glucose oxidation
135	18.3	Liberation of fatty acids from triacylglycerols
136	18.5	The role of carnitine in the transfer of acyl groups to the mitochondrial matrix
137	18.6	The β -oxidation of saturated fatty acids
138	18.8	The oxidation of fatty acid containing an odd number of carbon atoms
139	18.10	The oxidation pathway for polyunsaturated fatty acids
140-141	18.15	The first cycle of palmitate synthesis
142-143	18.19	Pathways for the biosynthesis of triacylglycerols
144	Table 18.1	The balance sheet for oxidation of one molecule of stearic acid
145	19.5	Electron flow in Photosystems I and II
146	19.8	Cyclic electron flow coupled to photophosphorylation in Photosystem I
147–148	19.9	Molecular events that take place at the photosynthetic reaction center of <i>Rhodopseudomonas</i>
149	19.11	The relationship between photophosphorylation and the proton gradient
150	19.12	The components of the electron transport chain of the thylakoid membrane
151	19.13	The two possible electron transfer pathways in a photosynthetic anaerobe
152	19.14	The main features of the Calvin cycle
153	19.20	The complete Calvin cycle
154	19.21	The C ₄ pathway
155	20.5	Families of amino acids based on biosynthetic pathways
156	20.6	The relationship between amino acid metabolism and the citric acid cycle
157	20.17	The urea cycle
158	20.18	The urea cycle and some of its links to the citric acid cycle
159	C.4	Feedback control in the biosynthesis of amino acids of the aspartate family
160	C.9	Histidine biosynthesis
161	C.10	The biosynthesis of prophyrins
162	21.1	Block diagram of intermediary metabolism
163	21.4	Hormonal control system
164	21.5	Activation of adenylyl cyclase by heterodimeric G proteins
165	21.12	A two-stage process leads to the growth and differentiation of T cells