

Contents

Preface

The Science of Plant Ecology 1

Ecology as a Science 1

The Genesis of Scientific Knowledge 2

Objectivity, Subjectivity, Choice, and Chance in Scientific Research 3

Experiments: The Heart of Research 4

Testing Theories 6

Specific Results versus General Understanding 8

Scale and Heterogeneity 8

The Structure and History of Plant Ecology 9

PART I The Individual and its Environment

Photosynthesis and the Light Environment 15

The Process of Photosynthesis 16 Photosynthetic Rates 17

Limitations Caused by Light Levels 18 Limitations on Carbon Uptake 20

Variation in Photosynthetic Rates within and between Habitats 22

BOX 2A PHOTORESPIRATION 23

The Three Photosynthetic Pathways 23

C₃ Photosynthesis 24

C₄ Photosynthesis 24

BOX 2B STABLE ISOTOPES AND PHOTOSYNTHESIS 26

Crassulacean Acid Metabolism (CAM

Photosynthesis) 27

Evolution of the Three Photosynthetic Pathways 28

Phylogeny of the Photosynthetic Pathways 28 Photosynthesis Through Evolutionary Time 29

Growth Form, Phenology, and Distribution of C_3 , C_4 , and CAM Plants 30

Growth Forms and Habitats 30

Phenology 32

Geographic Distributions 32

Adaptations to the Light Environment 35

Sun and Shade Leaves 35

Species' Adaptations to High and Low Light Habitats 36

BOX 2C LEAF IRIDESCENCE AND STRUCTURAL COLORATION 37

Do Sun and Shade Adaptations Exist within Species? 38

Day Length: Responses and Adaptations 38

3 Water Relations and Energy Balance 41

Adapting to Life on Land 41 Water Potential 42 The Soil-Plant-Atmosphere Continuum 44 Transpiration and the Control of Water Loss 44

Strategies for Coping with Water Availability Conditions 46 Whole-Plant Adaptations to Low Water Availability 47

Physiological Adaptations 49
Anatomical and Morphological Adaptations 50

The Energy Balance of Leaves 56

Radiant Energy 57

BOX 3A WHY THE SKY IS BLUE AND THE SETTING SUN IS RED 58

Conduction and Convection 59 Latent Heat Exchange 60

Putting It All Together: Leaf Temperature 60

4 Soils, Mineral Nutrition, and Belowground Interactions 63

Soil Composition and Structure 63

Soil Texture 64 Soil pH 66

Horizons and Profiles 67

Origins and Classification 69

Organic Matter and the Role of Organisms 70

Water Movement within Soils 72 Plant Mineral Nutrition 74

Nitrogen in Plants and Soils 76 Biological Nitrogen Fixation 76 BOX 4A SYMBIOSES AND MUTUALISMS 77 Phosphorus 79

Mycorrhizae 79

Major Groups of Mycorrhizae 80

The Role of Mycorrhizae in Plant Phosphorus Nutrition 81

Other Functions of Mycorrhizae 82

Orchids and Their Mycorrhizal Associations 82

Mutualism or Parasitism? 82

Plant Interconnections via Mycorrhizal Fungi 83

PART II Evolution and Population Biology

5 Processes of Evolution 87

Natural Selection 87

Variation and Natural Selection 87
The Components of Natural Selection 88
Phenotypic Variation and Phenotypic Plasticity 90

Heritability 90

Resemblance among Relatives 91
Partitioning Phenotypic Variation 92
Genotype-Environment Interactions 93
Gene-Environment Covariation 94

Patterns of Adaptation 94 Levels of Selection 95 Other Evolutionary Processes 96

Processes that Increase Variation 96

Processes that Decrease Variation 97 Variation among Populations 99

6 Outcomes of Evolution 101

Heavy-Metal Tolerance 102
Ecotypes 103
Adaptive Plasticity 106
Selection in Structured Populations 108
Frequency-Dependent Selection 108
Group Selection 110
Convergent Evolution 111

Convergent Evolution 111 Speciation 112

Population Structure, Growth, and Decline 123

Some Issues in the Study of Plant Population Growth 118

Population Structure 120

Some Population Structure Issues Special to Plants 121

Sources of Population Structure 122

Studying Population Growth and Decline 123

Life Cycle Graphs 123

BOX 7A DEMOGRAPHY OF AN ENDANGERED CACTUS, CORYPHANTHA ROBBINSORUM 124

Matrix Models 125

Analyzing Matrix Models 126

BOX 7B MULTIPLYING A POPULATION VECTOR BY A MATRIX 126

But Real Plants Live in Variable Environments 127 Lifetime Reproduction: The Net Reproductive Rate 128

Reproductive Value: The Contribution of Each Stage to Population Growth 128

BOX 7C PARTIAL DERIVATIVES 130

Sensitivity 130

Elasticity 131

Age and Stage Revisited 132

Other Approaches to Modeling Plant Demography 133

Demographic Studies of Long-Lived Plants 133 Random Variation in Population Growth and Decline 136

Causes of Random Variation 136 Long-Term Growth Rates 138 Studying Variable Population Growth 139

8 Growth and Reproduction of Individuals 143

Plant Growth 143 Ecology of Growth 145

Plant Architecture and Light Interception 145

Growth of Clonal Plants 146

Plant Reproduction 147

Vegetative Reproduction 148

Seeds Produced Asexually 148 Sexual Life Cycles of Plants 148

Pollination Ecology 150

Wind Pollination 150

Attracting Animal Visitors: Visual Displays 152

Attracting Animal Visitors: Floral Odors and

Acoustic Guides 153

Limiting Unwanted Visits 154

Pollination Syndromes 154

Aquatic Plants and Pollination 155

BOX 8A SPECIALIZED PLANTS AND POLLINATORS 156

Who Mates with Whom? 157

Plant Gender 157

Competition for Pollinators and among Pollen Grains 157

BOX 8B POLLINATION EXPERIMENTS 158

Pollen Dispersal and Its Consequences 158

Assortative Mating 160

Understanding Plant Mating Systems 160

The Ecology of Fruits and Seeds 161

Seed Dispersal Patterns 161 Seed Banks 164

9 Plant Life Histories 167

Size and Number of Seeds 167 Life History Strategies 170

Seed Germination 171

Life Span 171

r- and *K*-selection 173

Grime's Triangular Model 173

Demographic Life History Theory 174

Reproductive Allocation 174

Bet Hedging in a Variable Environment 175

Difficulties in Measuring Trade-Offs 176

Phenology: Within-Year Schedules of Growth and Reproduction 176

Vegetative Phenology 176

Evergreen versus Deciduous Habits 178

Reproductive Phenology: Abiotic Factors 179

Reproductive Phenology: Biotic Factors 181

PART | From Populations to Communities

Competition 185

Competition at the Level of Individuals 186

Size and Density 186

Mortality, Size, and Density 188

Mechanisms of Competition 188

Is Bigger Better? 190

Apparent Competition 190

Populations and Competition 191

Competitive Hierarchies 191

Quantifying Competition 191

Experimental Methods for Studying Competition 192

Greenhouse and Garden Experiments 192

BOX 10A THE IMPLICATIONS OF HOW COMPETITION IS MEASURED 194

Field Experiments 196

Mechanisms of Interspecific Competition 197

Resource-Based Competition 197

Trade-Offs and Strategies 197

Allelopathy 199

Modeling Competition 199

Two Equilibrium Approaches 200

Patch-Based and Nonequilibrium Models 200

Effects of Competition on Community Composition 202

Competition along Environmental Gradients 205

Conceptual Models of Competition in Habitats with

Differing Productivities 205

Experimental Evidence 206

Evidence from Research Syntheses 208

Resolution of Differing Results 209

Herbivory and Plant-Pathogen Interactions 213

Herbivory at the Level of Individuals 213 Herbivory and Plant Populations 214

Herbivory and Spatial Distribution of Plants 216 Granivory 217

Biological Control 217

Effects of Herbivory at the Community Level 219

Consequences of Herbivore Behavior 219

Introduced and Domesticated Herbivores 219

Effects of Native Herbivores 221

Generality 222

Plant Defenses 223

Plant Physical Defenses 223

Plant Secondary Chemistry 225

Constitutive versus Induced Defenses 227

Evolutionary Consequences of Plant-Herbivore Interactions 228

Pathogens 231

Responses of Individual Plants to Infection 231 More Complex Interactions 232

Community Properties 235

What Is a Community? 235

BOX 12A COMMUNITIES, TAXA, GUILDS, AND FUNC-**TIONAL GROUPS 236**

The History of a Controversy 237

A Modern Perspective on the Issues in Contention

Are Communities Real? 240

BOX 12B A DEEPER LOOK AT SOME DEFINITIONS: ABIOTIC FACTORS AND EMERGENT PROPERTIES 241

Describing Communities 241

Species Richness 242

Diversity, Evenness, and Dominance 243

Sampling Methods and Parameters for Describing Community Composition 246

Physiognomy 248

Long-Term Studies 249

BOX 12C THE LONG-TERM ECOLOGICAL RESEARCH **NETWORK 251**

13 Disturbance and Succession 253

Theories of the Causes of Succession 254 Disturbance 256

Gaps 257

Fire 258

Wind 261

Water 262

Animals 263

Earthquakes and Volcanoes 263

Disease 264

Humans 264

Colonization 264

Determining the Nature of Succession 266

Interaction between Methodology and Understanding 266

Mechanisms Responsible for Successional Change

The Predictability of Succession 270

Primary Succession 271

Climax Revisited 273

14 Local Abundance, Diversity, and Rarity 275

Dominance 275

Are Dominant Species Competitively Superior? 276 Abundance Curves 276

Rarity and Commonness 277

The Nature of Rarity 277

Patterns of Rarity and Commonness 278

Causes of Rarity and Commonness 279

Invasive Species and Community Susceptibility

Why Do Some Species Become Invasive? 281 What Makes a Community Susceptible to Invasion?

Abundance and Community Structure 284

Productivity and Diversity 284

Niche Differentiation, Environmental Heterogeneity, and Diversity 287

Gaps, Disturbance, and Diversity 288

Effects of Increasing Diversity 288

Testing the Effects of Diversity on Ecosystems 289 Diversity and Stability 290 Regional Processes 291

PART V From Ecosystems to Landscapes

S Ecosystem Processes 295

Biogeochemical Cycles: Quantifying Pools and Fluxes 296

The Global Water Cycle 298

Carbon in Ecosystems 300

Decomposition and Soil Food Webs 300

Productivity 302

Methods for Estimating Productivity 305

Carbon Storage 307

Models of Ecosystem Carbon Cycles 308

Nitrogen and the Nitrogen Cycle at Ecosystem and Global Levels 309

Nitrogen Fixation 309

Other Sources of Nitrogen Input to Living Organisms 310

Nitrogen Mineralization 311

Denitrification and Leaching of Nitrogen 312

Decomposition Rates and Nitrogen Immobilization 313

Plant Uptake of Nitrogen 313

Phosphorus in Terrestrial Ecosystems 314 **Ecosystem Nutrient Cycling and Plant Diversity** 315

BOX 15A SERPENTINE SOILS 316

Ecosystem Processes for Some Other Elements 316

Sulfur 316

Calcium 317

16 Communities in Landscapes 319

Comparing Communities 319

Non-numerical Techniques 320 Univariate Techniques 320 Multivariate Techniques 320

Landscape Patterns 322

Ordination: Describing Patterns 322 Determining Causes of Patterns 324 Types of Data 326 Classification 326

Views on Continuous versus Discrete Landscapes 329

BOX 16A DIFFERENTIATING VEGETATION BASED ON SPECTRAL QUALITY 329

Landscape Diversity 329

Differentiation Diversity 329 Pattern Diversity 330

Z Landscape Ecology 333

Spatial Patterns 334

Defining Patches 335 Quantifying Patch Characteristics and Interrelationships 336

Scale 336

Definitions and Concepts 336 Spatial and Ecological Scale 339 Quantifying Aspects of Spatial Pattern and Scale

Toward a Theoretical Basis for Landscape Patterns: Island Biogeography Theory 340

Metapopulation Theory 341 **BOX 17A METAPOPULATION MODELS 342** Metapopulation Patterns 343

Landscape Ecology and Conservation 345

Reserve Design 345 Fragmentation 345 Edges, Connectivity, and Nestedness 347

PART V Global Patterns and Processes

Climate and Physiognomy 353

Climate and Weather 353

Temperature 354

Short-Term Variation in Radiation and Temperature

Long-Term Cycles 358

Precipitation 361

Global Patterns 361

BOX 18A THE CORIOLIS EFFECT 362

Continental-Scale Patterns 364

Seasonal Variation in Precipitation 368

The El Niño Southern Oscillation 370

Predictability and Long-Term Change 373

Plant Physiognomy across the Globe 374

Forests 374 Tree Line 375 Grasslands and Woodlands 376 Shrublands and Deserts 377

Biomes 381

Categorizing Vegetation 381 Moist Tropical Forests 385

Tropical Rainforest 385

Tropical Montane Forest 387

Seasonal Tropical Forests and Woodlands 387

Tropical Deciduous Forest 388

Thorn Forest 389

Tropical Woodland 389

Temperate Deciduous Forest 390

Other Temperate Forests and Woodlands 391

Temperate Rainforest 391

Temperate Evergreen Forest 392

Temperate Woodland 393

Taiga 394

Temperate Shrubland 394

Grasslands 395

Deserts 399

Hot Desert 399 Cold Desert 400

Alpine and Arctic Vegetation 401

Grassland and Shrubland 401 Tundra 402

20 Regional and Global Diversity 405

Large-Scale Patterns of Diversity 406
Levels of Explanation 406
Explanations for Latitudinal Gradients 408
Continental Differences 410
Other Geographic Patterns 412

Species Diversity and Patterns of Overlap 412 Endemism, Centers of Diversification, and Isolation 413

Relationships between Regional and Local Diversity 414

BOX 20A THE FYNBOS AND THE CAPE REGION OF SOUTH AFRICA 416

Productivity and Scale 418

21 Paleoecology 421

The Paleozoic Era 422
The Mesozoic Era 425

The Dominance of Gymnosperms 425
The Breakup of Pangaea and the Rise of the
Angiosperms 426

The Cretaceous-Tertiary (K-T) Boundary 427
The Cenozoic Era 427
Paleoecology Methods 428
The Recent Past 429

At the Glacial Maximum 430 Glacial Retreat 433 Climate Fluctuations in the Recent Past 434

22 Global Change: Humans and Plants 437

Carbon and Plant-Atmosphere Interactions 437

The Global Carbon Cycle 437

Direct Effects of Increasing CO₂ on Plants 439

Anthropogenic Global Climate Change 440

The Greenhouse Effect 440

Global Climate Change: Evidence 442

Global Climate Change: Predictions 443

BOX 22A MODELING CLIMATE 444

Biotic Consequences of Climate Change 445

Anthropogenic Effects on the Global Carbon Cycle 449

Deforestation 449
Fossil Fuel Combustion 450
BOX 22B DAILY HUMAN ACTIVITIES AND CO₂
GENERATION 452

Acid Precipitation and Nitrogen Deposition 454

Declining Global Biodiversity and Its Causes 455
Habitat Fragmentation and Loss 456
Invasive Spacies and Other Threats to Riediversity

Invasive Species and Other Threats to Biodiversity 459

Human Populations and Land Use Patterns 460 *A Ray of Hope?* 462

Appendix: A Statistics Primer 465

Data Description 465
Estimating Accuracy 466
Using and Reporting Statistics 467

Photo Credits 469

Glossary 471

Literature Cited 485

Index 503