OXFORD

Plant Biotechnology

The genetic manipulation of plants

Adrian Slater, Nigel Scott, and Mark Fowler

Contents

Preface

	List of Abbreviations Foreword	xili xxi
1	Plant genomes: the organisation and expression of plant genes	of 1
,	Introduction DNA, chromatin and chromosome structure	1
		,
	An introduction to gene structure and gene expression	6
	Gene structure and expression in a eukaryotic protein-coding gene Translation	6 7
	Regulation of gene expression	12
	Chromatin conformation	14
	Gene transcription	14
	RNA modification, splicing, turnover and transport	15
	Translation	18
	Post-translational modification	18
	Localisation	19
	Protein turnover	19
	Conclusions	20
	Implications for plant transformation	20
	Examples of promoter elements used to drive transgene expression	24
	Protein targeting	24
	Heterologous promoters	24
	Genome size and organisation	25
	Arabidopsis and the new technologies	25
	Genome-sequencing projects—technology, findings and applications	26
	Biotechnological implications of the 'Arabidopsis Genome Sequencing Ir	nitiative' 30
	Crop plant genome sequencing	30

	Summary	32
	Further reading	33
2	Plant tissue culture	35
	Introduction	35
	Plant tissue culture	35
	Plasticity and totipotency	35
	The culture environment	36
	Plant cell culture media	36
	Plant growth regulators	40
	Culture types	43
	Callus	43
	Cell-suspension cultures	43 44
	Protoplasts Root cultures	45
	Shoot tip and meristem culture	45
	Embryo culture	45
	Microspore culture	45
	Plant regeneration	46
	Somatic embryogenesis	47
•	Organogenesis	50
	Integration of plant tissue culture into plant transformation protocols	51
	Summary	52
	Further reading	52
-		
3	Techniques for plant transformation	55
	Introduction	55
	Agrobacterium-mediated gene transfer	55
	The biology of Agrobacterium	55
	The Ti plasmid	56
	T -p:asmid features	57
	The process of T-DNA transfer and integration	59
	Practical applications of Agrobacterium-mediated plant transformation	63
	Transformation in planta	66
	Direct gene transfer methods	66
	Particle bombardment	67
	Polyethylene glycol (PEG)-mediated transformation	72
	Electroporation	72
	Silicon carbide fibres—WHISKERS**	75

		Contents
	Summary	75
-	Further reading	77
4	Binary vectors for plant transformation	79
	Introduction	79
	Desirable features of any plasmid vector	79
	Development of plant transformation vectors	80
	Basic features of vectors for plant transformation	80
	Promoters and terminators	82
	Selectable markers	87
	Reporter genes	88
	Origins of replication	93
	Co-integrative and binary vectors	93
	Families of binary vectors	93
	Optimisation	94
	Arrangement of genes in the vector	94
	Transgene copy number	96
	Transgene position Transgene features	96
	- ,	9 7
	Clean gene technology	97
	Summary	99
	Further reading	100
; ;	The genetic manipulation of herbicide resistance	103
	Introduction	103
	The use of herbicides in modern agriculture	104
	What types of compounds are herbicides?	105
	Strategies for engineering herbicide resistance	107
	Prospects for plant detoxification systems	121
	Commercialisation of herbicide-resistant plants to date	122
	The environmental impact of herbicide-resistant crops	125
	The development of 'super weeds'	125
	Summary	129
	Further reading	129
-	The genetic manipulation of pest resistance	131
	Introduction	131
	The nature and scale of insect pest damage to crops	131

ix

	GM strategies for insect resistance: The Bacillus thuringiensis approach to insect resistance	132
	The use of 'Bt' as a biopesticide	136
	Bt-based genetic modification of plants The problem of insect resistance to Bt	137 139
	The environmental impact of <i>Bt</i> crops	143
	The 'Copy Nature' strategy	145
	Insect resistant crops and food safety	152
	Summary	153
	Further reading	153
7	Plant disease resistance	157
	Introduction	157
	Existing non-GM approaches	157
	Plant-pathogen interactions	159
	Prokaryotes Fungi and water moulds	160 160
	Viruses	161
	Natural disease resistance pathways—overlap between pests	
	and diseases	162
	Anatomical defences Pre-existing protein and chemical protection	163 163
	Inducible systems	163
	Systemic responses	170
	Biotechnological approaches to disease resistance	170
	Protection against fungal pathogens	171
	Antimicrobial proteins	174
	Induction of HR and SAR in transgenic plants	175
	Summary	176
	Further reading	177
	· · · · · · · · · · · · · · · · · · ·	
8	Reducing the effects of viral disease	179
	Introduction	179
	Types of plant viruses	179,
	RNA viruses	181
	Entry and replication—points of inhibition	183
-	How has industry dealt with viruses?	184

		Contents
	The transgenic approach—PDR	187
	Interactions involving viral proteins RNA effects	188 192
	What has been commercialised in the West?	198
	Yellow squash and zucchini	198
	Papaya Potato	198 199
	Risk	199
	Summary	201
	Further reading	202
9	Strategies for engineering stress tolerance	205
	Introduction	205
	The nature of abiotic stress	206
	The nature of water-deficit stress	207
	Different abiotic stresses create a water deficit	208
	Targeted approaches towards the manipulation of tolerance to specific water-deficit stresses	215
	Alternative approaches to salt stress	215
	Alternative approaches to cold stress	218
	Tolerance to heat stress	220
	Secondary effects of abiotic stress—the production of reactive oxygen species	222
	Strategy 1: Expression of enzymes involved in scavenging ROS	223
	Strategy 2: Production of antioxidants	227
	Summary	229
	Further reading	229
10	The improvement of crop yield and quality	231
	Introduction	231
	The genetic manipulation of fruit ripening	232
	Engineering plant protein composition for improved nutrition	251
	The genetic manipulation of crop yield by enhancement of photosynthesis	252
	Manipulation of light harvesting and the assimilate distribution—phytochromes	253
	Direct manipulation of photosynthesis—enhancement of dark reactions	256
	Summary	257
	Further reading	258

χi

11	Molecular farming/'pharming'	261
	Introduction	261
	Carbohydrates and lipids	261
	Carbohydrate production	263
	Metabolic engineering of lipids	270
	Molecular farming of proteins	279
	Production systems	280
	Medically related proteins	289
	Economic considerations for molecular farming	298
	Summary	301
	Further reading	302
12	Future prospects for GM crops	305
Pierrollini	Introduction	305
	The current state of transgenic crops	305
	Who has benefited from these first-generation crops?	307
	What will drive the development of the future generations of GM crops?	309
	Concerns about GM crops	309
	Antibiotic resistance genes	309
	Herbicide resistance and 'super-weeds'	311
	Gene containment	311
	Big business	312
	The regulation of GM crops and products	316
	The Euopean Union (EU) The USA	316 320
	Future developments in the science of plant biotechnology	324
	'Greener' genetic engineering	324
	Summary	329
	Further reading	330
	Index	335