Real Analysis and Probability

R. M. DUDLEY

Contents

Preface to the Cambridge Edition		<i>page</i> ix	
1 Fou	andations; Set Theory	1	
1.1	Definitions for Set Theory and the Real Number System	1	
	Relations and Orderings	9	
*1.3	Transfinite Induction and Recursion	. 12	
	Cardinality	16	
1.5	The Axiom of Choice and Its Equivalents	18	
2 Ger	neral Topology	24	
2.1	Topologies, Metrics, and Continuity	24	
2.2	Compactness and Product Topologies	34	
2.3	Complete and Compact Metric Spaces	44	
2.4	Some Metrics for Function Spaces	48	
2.5	Completion and Completeness of Metric Spaces	58	
*2.6	Extension of Continuous Functions	63	
*2.7	Uniformities and Uniform Spaces	67	
*2.8	Compactification	71	
3 Me	asures	85	
,3.1	Introduction to Measures	85	
3.2	Semirings and Rings	94	
3.3	Completion of Measures	101	
3.4	Lebesgue Measure and Nonmeasurable Sets	105	
*3.5	Atomic and Nonatomic Measures	109	
4 Inte	egration	114	
4.1	Simple Functions	114	
*4.2	Measurability	123	
4.3	Convergence Theorems for Integrals	130	

vi Contents

4.4 Product Measures	134
*4.5 Daniell-Stone Integrals	142
5 L ^p Spaces; Introduction to Functional Analysis	152
5.1 Inequalities for Integrals	152
5.2 Norms and Completeness of L^p	158
5.3 Hilbert Spaces	160
5.4 Orthonormal Sets and Bases	165
5.5 Linear Forms on Hilbert Spaces, Inclusions of LP Spaces,	
and Relations Between Two Measures	173
5.6 Signed Measures	178
6 Convex Sets and Duality of Normed Spaces	188
6.1 Lipschitz, Continuous, and Bounded Functionals	188
6.2 Convex Sets and Their Separation	195
6.3 Convex Functions	203
*6.4 Duality of L^p Spaces	208
6.5 Uniform Boundedness and Closed Graphs	211
*6.6 The Brunn-Minkowski Inequality	215
7 Measure, Topology, and Differentiation	222
7.1 Baire and Borel σ -Algebras and Regularity of Measures	222
*7.2 Lebesgue's Differentiation Theorems	228
*7.3 The Regularity Extension	235
*7,4\ The Dual of $C(K)$ and Fourier Series	239
*7.5 Almost Uniform Convergence and Lusin's Theorem	243
8 Introduction to Probability Theory	250
8.1 Basic Definitions	251
8.2 Infinite Products of Probability Spaces	255
8.3 Laws of Large Numbers	260
*8.4 Ergodic Theorems	267
9 Convergence of Laws and Central Limit Theorems	282
9.1 Distribution Functions and Densities	282
9.2 Convergence of Random Variables	287
9.3 Convergence of Laws	291
9.4 Characteristic Functions	298
9.5 Uniqueness of Characteristic Functions	
and a Central Limit Theorem	303
9.6 Triangular Arrays and Lindeberg's Theorem	315
9.7 Sums of Independent Real Random Variables	320

۷ii

*9.8 The Lévy Contir	nuity Theorem; Infinitely Divisible	
and Stable Laws		325
10 Conditional Expectat	tions and Martingales	336
10.1 Conditional Ex	pectations	336
10.2 Regular Condit	ional Probabilities and Jensen's	was to
Inequality		341
10.3 Martingales		353
10.4 Optional Stopp	ing and Uniform Integrability	358
10.5 Convergence of	f Martingales and Submartingales	364
*10.6 Reversed Marti	ingales and Submartingales	370
*10.7 Subadditive and	d Superadditive Ergodic Theorems	374
11 Convergence of Law	s on Separable Metric Spaces	385
11.1 Laws and Their		385
11.2 Lipschitz Func	tions	390
11.3 Metrics for Cor	nvergence of Laws	393
11.4 Convergence of	f Empirical Measures	399
11.5 Tightness and	Uniform Tightness	402
	orem: Nearby Variables	
with Nearby La	aws	406
*11.7 A Uniformity f	or Laws and Almost Surely Converging	
	Converging Laws	413
*11.8 Kantorovich-R	ubinstein Theorems	420
*11.9 <i>U</i> -Statistics	•	426
12 Stochastic Processes	3	439
12.1 Existence of Pr	rocesses and Brownian Motion	439
	arkov Property of Brownian Motion iciples, The Brownian Bridge,	450
and Laws of St		459
	nian Motion at Markov Times:	
Skorohod Imbe		469
12.5 Laws of the Ite	•	476
13 Measurability: Bore	l Isomorphism and Analytic Sets	487
*13.1 Borel Isomorp		487
*13.2 Analytic Sets		493
Appendix A Axiomatic (Set Theory	503
A.1 Mathematical	_	503
A.2 Axioms for Se		505

iii	Contents
-----	----------

A.3 Ordinals and Cardinals	510	
A.4 From Sets to Numbers	515	
Appendix B Complex Numbers, Vector Spaces, and Taylor's Theorem with Remainder	521	
Appendix C The Problem of Measure	526	
Appendix D Rearranging Sums of Nonnegative Terms	528	
Appendix E Pathologies of Compact Nonmetric Spaces	530	
Author Index		
Subject Index		
Notation Index		