TRIGONOMETRIC SERIES

Third Edition
Volumes I & II combined

With a foreword by Robert Fefferman

A. Zygmund

Cambridge Mathematical Library

	CONTENTS	
Prefe	ace 1	p <i>ag</i> e xi
Liet e	of Symbols	xiv
	CHAPTER I	
	TRIGONOMETRIC SERIES AND FOURIER SERIES.	
4	AUXILIARY RESULTS	
§ 1.	Trigonometric series	page 1
§ 2.	Summation by parts	3
§ 3.	Orthogonal series	5
§ 4.	The trigonometric system	6
§ 5.	Fourier-Stieltjes series	10
§ 6.	Completeness of the trigonometric system	11
§ 7.	Bessel's inequality and Parseval's formula	12
§ 8.	Remarks on series and integrals	14
§ 9.	Inequalities	16
§ 10.	Convex functions	21
§ 11.	Convergence in L	26
§ 12.	Sets of the first and second categories	28
§ 13.	Rearrangements of functions. Maximal theorems of Hardy and Littlewood	29
,	Miscellaneous theorems and examples	34
	CHAPTER II	
.]	FOURIER COEFFICIENTS. ELEMENTARY THEOREMS THE CONVERGENCE OF S[f] AND S[f]	ON
§Ι.	Formal operations on $S[f]$	35
§ 2.	Differentiation and integration of $S[f]$	40
§ 3.	Modulus of continuity. Smooth functions	42
§ 4.	Order of magnitude of Fourier coefficients	45
§ 5.	Formulae for partial sums of $S[f]$ and $\tilde{S}[f]$	49
§ 6.	The Dini test and the principle of localization	52
§ 7.	Some more formulae for partial sums	55
88.	The Dirichlet-Jordan test	57

			_
§ 9.	Gibbs's phenomenon	page	6
§ 10.	The Dini-Lipschitz test		6
§ 11.	Lebesgue's test		6
§ 12.	Lebesgue constants		6'
§ 13.	Poisson's summation formula		6
	Miscellaneous theorems and examples		7
	CHAPTER III		
	SUMMABILITY OF FOURIER SERIES		
§ 1.	Summability of numerical series		7
§ 2.	General remarks about the summability of $S[f]$ and $\tilde{S}[f]$		8
§ 3.	Summability of $S[f]$ and $\tilde{S}[f]$ by the method of the first arithmetic mean		8
§ 4.	Convergence factors		9
§ 5.	Summability (C, α)		9
§ 6.	Abel summability		9
§ 7.	Abel summability (cont.)		9
§ 8.	Summability of $S[dF]$ and $\tilde{S}[dF]$:	10
§ 9.	Fourier series at simple discontinuities	:	10
10.	Fourier sine series	:	10
11.	Gibbs's phenomenon for the method (C, α)	:	11
12.	Theorems of Rogosinski	:	11
§ 13.	Approximation to functions by trigonometric polynomials	:	l l
	Miscellaneous theorems and examples]	2
	CHAPTER IV		
	1.		
	CLASSES OF FUNCTIONS AND FOURIER SERIES		
§ 1.	The class L^2	1	12
§ 2.	A theorem of Marcinkiewicz	1	12
§ 3.	Existence of the conjugate function	· :	13
§ 4.	Classes of functions and (C, 1) means of Fourier series	:	13
§ 5.	Classes of functions and (C, 1) means of Fourier series (cont.)	:	14
§ 6.	Classes of functions and Abel means of Fourier series		14

	Contents		vii
§7.	Majorants for the Abel and Cesàro means of $S[f]$	page	154
§ 8.	Parseval's formula		157
§ 9.	Linear operations		162
§ 10.	Classes L_{Φ}^{*}		170
§ 11.	Conversion factors for classes of Fourier series		175
	Miscellaneous theorems and examples		179
	CHAPTER V		

SPECIAL TRIGONOMETRIC SERIES

§1.	Series with coefficients tending monotonically to zero	182
§.2.	The order of magnitude of functions represented by series with monotone coefficients	186
§ 3.	A class of Fourier-Stieltjes series	194
§ 4 .	The series $\sum n^{-\frac{1}{2}-\alpha} e^{icn \log n} e^{inx}$	197
§ 5.	The series $\Sigma \nu^{-\beta} e^{i\nu^a} e^{i\nu x}$	200
§ 6.	Lacunary series	202
§ 7.	Riesz products	208
§ 8.	Rademacher series and their applications	212
§ 9.	Series with 'small' gaps	222
10.	A power series of Salem	225
	Miscellaneous theorems and examples	228

CHAPTER VI

THE ABSOLUTE CONVERGENCE OF TRIGONOMETRIC SERIES

§ 1.	General series	232
§ 2.	Sets N	235
§ 3.	The absolute convergence of Fourier series	240
§ 4:	Inequalities for polynomials	244
§ 5.	Theorems of Wiener and Lévy	245
§ 6.	The absolute convergence of lacunary series	247
	Miscellaneous theorems and examples	250

CHAPTER VII

COMPLEX METHODS IN FOURIER SERIES

§ 1.	Existence of conjugate functions	page	252
§ 2.	The Fourier character of conjugate series		253
§ 3.	Applications of Green's formula		260
§ 4.	Integrability B		262
§ 5 .	Lipschitz conditions		263
§ 6.	Mean convergence of $S[f]$ and $\tilde{S}[f]$		266
§ 7.	Classes H ^p and N		271
§ 8.	Power series of bounded variation		285
§ 9.	Cauchy's integral		288
10.	Conformal mapping		289
	Miscellaneous theorems and examples		295
	CHAPTER VIII		
	DIVERGENCE OF FOURIER SERIES		
§ 1.	Divergence of Fourier series of continuous functions		298
	Further examples of divergent Fourier series		302
§ 3.	Examples of Fourier series divergent almost everywhere		305
§ 4.	An everywhere divergent Fourier series		310
	Miscellaneous theorems and examples		314
	07.47		
	CHAPTER IX		
٠	RIEMANN'S THEORY OF TRIGONOMETRIC SERIE	S	
§ 1.	General remarks. The Cantor-Lebesgue theorem		316
§ 2.	Formal integration of series		319

§3. Uniqueness of the representation by trigonometric series

series

 $\S 4$. The principle of localization. Formal multiplication of trigonometric

325

330

	Contents		1X
§ 5.	Formal multiplication of trigonometric series (cont.)	page	337
§ 6.	Sets of uniqueness and sets of multiplicity		344
§ 7.	Uniqueness of summable trigonometric series		352
§ 8.	Uniqueness of summable trigonometric series (cont.)		356
§ 9.	Localization for series with coefficients not tending to zero		363
·	Miscellaneous theorems and examples		370

Notes

375