

Structure and Performance of Cements Second Edition Edited by

J. Bensted and P. Barnes

Contents

Li	st of co	ontributors	xii
Pγ	eface		xvi
N	otation		xviii
1		ent manufacture Iaw Kurdowski	1
	1.1	Introduction	1
	1.2	Raw material preparation	2
	1.3	Raw material crushing	2 2 3
	1.4	Raw material grinding	
	1.5	Classifiers	4
	1.6	Homogenization	5
	1.7	Clinker burning	7
	1.8	Coolers	13
	1.9	Cement grinding	16
	1.10	Automation	18
		Environmental protection	20
	1.12 1.13	Acknowledgements References	23
	1.13	References	23
2	Comp	position of cement phases	25
	Herb	ert Pöllman	
	2.1	Introduction	25
	2.2	Simple oxides, elements and their potential role in	23
		cement chemistry	27
	2.3	Calcium silicates	27
	2.4	Aluminium silicates, calcium aluminium silicates, their properties	
		and occurrence in cements	34
	2.5	Calcium aluminates	35
	2.6	Calcium aluminium ferrites	38
	2.7	Influence of minor components (alone or in combinations)	
		alkalies, MgO, SO ₃ , phosphates, fluorides, borates, chlorine,	
		titanium, heavy metals	41
	2.8	Increased MgO content	41
	2.9	Sulphate-containing phases	41
			v

2.10

Chlorine-containing phases

		Phosphate in cement	44
		Heavy metals in cement	46
	2.13	Elements used as fluxes (boron and fluorine)	46
		Quantification of cementitious materials by Rietveld method	50
		Acknowledgements	51
	2.16	References	51
3	Hydrai	tion of Portland cement	57
	E. M.	Gartner, J. F. Young, D. A. Damidot and I. Jawed	
	3.1	Introduction	57
	3.2	Hydration of tricalcium silicate	57
	3.3	Hydration of dicalcium silicate	78
	3.4	Hydration of tricalcium aluminate	81
·		Hydration of the ferrite phase	87
		Hydration of Portland cement	89
		Microstructure of hardened paste	100
		Appendix - Glossary of terms	108
	3.9	References	108
4	Calciu	m aluminate cements	114
	John B	ensted	
		Introduction	114
		Manufacture	115
		Phase composition	116
		Physical properties	117
		Hydration	118
		Admixtures	123
		Blends with other materials	124
		Low-temperature applications	126
		High-temperature applications	126
		Hydrophobic applications	127
		Durability	127
		Safe usage of CACs	130
		Concrete society report in the UK on CACs	133
		CAC and structures	134
		Further comments on sulphate resistance	134
		Thermal analysis methods for assessing CAC conversion	136
		Further comments	136
		Conclusion	137
	4.19	Acknowledgements	138

41

138

140

140

141

4.20 References

Introduction

Binders

S. Chandra

5.1

5.2

5 Properties of concrete with mineral and chemical admixtures

		Contents
5.3 5.4	·	142 143
5.5		150
5.6	5 Interfacial transition zones (ITZ)	156
5.7	7 Durability properties	163
5.8	0 01 1	168
5.9	1 0	178
5.3		179
5.3		180
5.1	12 References	180
-	ecial cements K. Chatterjee	186
6.3	,	186
6.2		186
6.3		188
6.4		189
6.	5 Cement formulations with improved engineering properties	206
6.6	· · · · · · · · · · · · · · · · · · ·	218
6.	. 1	224
6.	0 0,	226
6.9	•	231
6.		232
6.	11 References	233
	evelopments with oilwell cements hn Bensted	237
•		
7.: 7.:		237
7.		238 239
7		239
7.	O The Control of the	240
7.		240
	and H cements	241
7.	7 Cementing in hostile environments	242
7.		244
7.5	9 Alternatives to standard Class G and H cements	246
	10 Conclusion	251
	11 Acknowledgements	251
7.	12 References	251
	ypsum in cements hn Bensted	253
8.	1 Introduction	253
8.	The calcium sulphate-water system	253
8.		255
8.		257
		vii

Contents

	8.5	By-product gypsums	258
		Flash set	260
	8.7	False set	260
	8.8	Air set	261
	8.9	Portland cement-calcium aluminate cement compositions	262
	8.10	Calcium sulphoaluminate cements	262
	8.11	Conclusion	263
	8.12	References	263
9	Alkali-	-silica reaction in concrete	265
	D. W.	Hobbs	
	9.1	Introduction	265
	9.2	The reaction	265
	9.3	Mechanism of expansion	266
	9.4	Concretes affected	267
	9.5	Visual and internal cracking induced by ASR	267
	9.6	Pessimum behaviour	269
	9.7	Sources of alkali	270
	9.8	Reactive silica	271
		Diagnosis of ASR as the cause of visual cracking	272
		Factors influencing expansion	273
		Concluding remarks	280
	9.12	References	280
10	•	ed ettringite formation	282
	C. Far	ny, K. L. Scrivener and H. F. W. Taylor	
		Introduction	282
		DEF in field concretes	282
		Coarse microstructure of materials damaged by DEF	283
	10.4	Macroscopic properties associated with DEF	283
		Effect of cement composition	284
		Cement hydration at 70–100°C	284
		Chemistry of changes after cooling to ambient temperatures	286
		Paste microstructure in materials cured at elevated temperature	287
	10.9	Expansion	288
		Conclusions	292
		Acknowledgements	293
	10.12	References	293
11		ide corrosion in cementitious system www.Kurdowski	295
	11.1	Introduction	295
		Chloride ions diffusion in cement paste	295
	11.3	Binding capacity of chloride ions in cement paste	297

Factors influencing the diffusion of chloride ions in the cement paste

Mechanism of cement paste destruction in the chloride medium

298

300

47		Contents
	Chloride-induced corrosion of reinforcement in concrete References	306 308
12 Blast E. La	furnace cements ang	310
	History	310
	Slag composition and reactivity	310
	Grindability	313
	Blastfurnace cement characterization	314
	Durability References	318 323
	erties and applications of natural pozzolanas assazza	326
13.1	Introduction	326
13.2	Classification of natural pozzolanas	326
	Pozzolana-lime mixes	328
	Pozzolana-containing cements	335
	Conclusions	348
13.6	References	348
	rized fuel ash as a cement extender n Luke	353
14 1	Introduction	353
	PFA formation	354
	Characteristics of PFA	355
	Role of PFA on performance of extended systems	357
	References	369
	kaolin as a pozzolanic addition to concrete R. Jones	372
	Introduction	372
	Structure of metakaolin (mk)	373
	Pozzolanic reactions of mk	374
	Effect of mk on the basic properties of PC concrete	378
	Effect of mk on the properties of uncured concrete	381
	Effect of mk on the properties of hardened concrete	385
	Durability of mk concrete	389
	Metakaolin in engineering concrete	393
	Acknowledgements	395
15.10) References	395
	densed silica fume as a cement extender ustnes	399
16.1	Introduction	399
	Physical effects	399
	Chemical effects	401
		ix

Contents

	16.4 Conclusions	407
	16.5 References	407
17	Cement-based composite micro-structures	409
	Stephen P. Bailey, David O'Connor, Sally L. Colston, Paul Barnes, Herbert Freimuth and Wolfgang Ehrfeld	
	1 1	100
	17.1 Introduction17.2 Cement-composite development	409
	17.2 Cement-composite development 17.3 Micro-mould design	411 412
	17.4 Mould fabrication	412
	17.5 MSCCD applications	413
	17.6 MSCCD production	415
	17.7 Quality of MSCCD features	416
	17.8 Conclusions	419
	17.9 Acknowledgements	419
	17.10 References	419
18	X-ray powder diffraction analysis of cements	420
	J. C. Taylor, L. P. Aldridge, C. E. Matulis and I. Hinczak	
	18.1 Introduction	420
	18.2 X-ray diffraction from cement	421
	18.3 Qualitative analysis of cements	422
	18.4 The method of X-ray diffraction	423
	18.5 Physical factors affecting XRD quantitative analysis	425
	18.6 Choice of radiation in cement XRD studies	427
	18.7 Amorphous (non-diffracting) content	427
	18.8 Background intensity	429
	18.9 Rietveld refinement of OPC XRD patterns18.10 Refinement strategy for Rietveld XRD assays of cements	429 432
	18.11 Errors in Rietveld quantifications	434
	18.12 Crystal structure analysis of Portland cement phases by	TJT
	the Rietveld method	434
	18.13 Quantitative analysis of hydrating phases	435
	18.14 Recent Rietveld studies of real cements	436
	18.15 Conclusions	437
	18.16 References	437
19	Electrical monitoring methods in cement science	442
	W. J. McCarter, G. Starrs and T. M. Chrisp	
	19.1 Introduction	442
	19.2 Immittance formalisms	442
	19.3 Application of electrical measurements	446
	19.4 Concluding remarks	453
	19.5 Acknowledgements	454
	19.6 References	454

			Contents
20		ear magnetic resonance spectroscopy and magnetic resonance imaging nents and cement-based materials	457
		n Skibsted, Christopher Hall and Hans J. Jakobsen	4 3/
	20.1	Introduction	457
	20.2	Solid-state NMR methods	458
	20.3	Structure and bonding in cement minerals	462
	20.4	Proton relaxation and pore structure	467
	20.5	Other nuclei	469
	20.6	Magnetic resonance imaging	469
	20.7	References	472
21	The u	se of synchrotron sources in the study of cement materials	477
		Barnes, Sally L. Colston, A. C. Jupe, S. D. M. Jacques, M. Attfield, R. Pisula,	
	S. Mo	organ, C. Hall, P. Livesey and S. Lunt	
	21.1	Introduction	477
	21.2	The synchrotron	477
	21.3	High quality/resolution powder diffraction	479
	21.4		482
	21.5	Energy-dispersive powder diffraction	483
	21.6	Extended X-ray absorption fine structure	494

20.6 Magnetic resonance imaging 20.7 References 21 The use of synchrotron sources in the study of cement materials Paul Barnes, Sally L. Colston, A. C. Jupe, S. D. M. Jacques, M. Attfield, R. Pisula, S. Morgan, C. Hall, P. Livesey and S. Lunt 21.1 Introduction 21.2 The synchrotron 21.3 High quality/resolution powder diffraction 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy 21.8 Tomographic energy-dispersive diffraction imaging	469 472 477 477 479 482 483 494
21 The use of synchrotron sources in the study of cement materials Paul Barnes, Sally L. Colston, A. C. Jupe, S. D. M. Jacques, M. Attfield, R. Pisula, S. Morgan, C. Hall, P. Livesey and S. Lunt 21.1 Introduction 21.2 The synchrotron 21.3 High quality/resolution powder diffraction 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy	477 477 479 482 483
Paul Barnes, Sally L. Colston, A. C. Jupe, S. D. M. Jacques, M. Attfield, R. Pisula, S. Morgan, C. Hall, P. Livesey and S. Lunt 21.1 Introduction 21.2 The synchrotron 21.3 High quality/resolution powder diffraction 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy	477 477 479 482 483
 21.2 The synchrotron 21.3 High quality/resolution powder diffraction 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy 	477 479 482 483
 21.3 High quality/resolution powder diffraction 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy 	479 482 483
 21.4 Single crystal micro-diffraction 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy 	482 483
 21.5 Energy-dispersive powder diffraction 21.6 Extended X-ray absorption fine structure 21.7 X-ray microscopy 	483
21.6 Extended X-ray absorption fine structure21.7 X-ray microscopy	
21.7 X-ray microscopy	494
21.8 Lomographic energy-dispersive diffraction imaging	493
	493
21.9 Conclusions	498
21.10 Acknowledgements	498
21.11 References	498
22 Electron microscopy of cements	500
I. G. Richardson	
22.1 General introduction	500
22.2 Historical context	500
22.3 Electron microscopy	51 1
22.4 Transmission electron microscopy of cement	51 1
22.5 High resolution transmission electron microscopy of cement hydrate phases	520
22.6 Scanning electron microscopy of cement	52 3
22.7 Low-temperature and environmental electron microscopy of cement	532
22.8 Analytical electron microscopy using X-rays	533
22.9 Analytical transmission electron microscopy (TEM-EDX/EELS)	534
44.40 El	540
22.10 Electron microscopy of cement	
22.10 Electron microscopy of cement 22.11 References	542
	542 557