

CONTENTS

PR	PREFACE		xix	
PA]		ELEMENTARY TOPICS IN CHEMICAL REACTOR DESIGN	1	
1	_	ple Chemical Reactions in Plug Flow Tubular Reactors ontinuous Stirred Tank Reactors	3	
	1-1	Gas-Phase Plug-Flow Tubular Reactors That Produce Triethanolamine from Ethylene Oxide and Ammonia, 3		
	1-2	Multiple Chemical Reactions in a Liquid-Phase CSTR, 11		
	1-3	Multiple Chemical Reactions in a CSTR Train, 19		
		Problems, 26		
2		Up Behavior of a Series Configuration of Continuous d Tank Reactors	33	
	2-1	Analysis of Multiple Reactions in Two CSTRs: Illustrative Problem, 34		
	2-2	Analysis of a Train of Five CSTRs: Illustrative Problem, 38		
		Problems, 46		

viii CONTENTS

3	Methai	ntic Plug-Flow Tubular Reactor That Produces nol Reversibly in the Gas Phase from Carbon Monoxide ydrogen	47
	3-1	Temperature-Averaged Specific Heats, 48	
	3-2	Conversion Dependence of Mass Fraction and Heat Capacity of the Mixture, 50	
	3-3	Plug-Flow Mass Balance in Terms of CO Conversion, 51	٠.
	3-4	Thermal Energy Balance for a Differential Reactor, 52	
	3-5	Thermodynamics of Multicomponent Mixtures, 53	
	3-6	Coupled Heat and Mass Transfer, 55	
	3-7	Kinetics and Thermodynamics of Elementary Reversible Reactions in the Gas Phase, 56	
	3-8	Integration of the Nonisothermal PFR Design Equation, 60	
		Problems, 62	
4	Liquid Chemi	ed Heat and Mass Transfer in Nonisothermal I-Phase Tubular Reactors with Strongly Exothermic ical Reactions	65
	4-1	, , , , , , , , , , , , , , , , , , ,	
	4-2	,	
	4-3	Endothermic Reactions in a Cocurrent Cooling Fluid, 87	
	4-4	Countercurrent Cooling in Tubular Reactors with Exothermic Chemical Reactions, 95	
	4-5	Manipulating the Inlet/Outlet Temperature of a Countercurrent Cooling Fluid: Multiple Stationary-State Behavior in Exothermic PFRs, 97	
		Problems, 104	
5	Multip Reacte	ple Stationary States in Continuous Stirred Tank ors	105
	5-1	Mass Balance, 106	
	5-2	Chemical Kinetics, 106	
	5-3	Thermal Energy Balance, 107	
	5-4	Multiple Stationary States, 110	

	3-3	Endothermic Chemical Reactions, 115	
		Problems, 117	
6	_	ed Heat and Mass Transfer with Chemical Reaction ch Reactors	123
	6-1	Isothermal Analysis of Experimental Rate Data, 123	
	6-2	Formalism for Multiple Reactions, 129	
	6-3	Adiabatic Operation, 130	
	6-4	Nonisothermal Analysis of a Constant-Volume Batch Reactor, 131	
•		Problems, 136	
7	Total l	Pressure Method of Reaction-Rate Data Analysis	139
	7-1	Elementary Reversible Gas-Phase Reactions in a Constant-Volume Flask, 139	
	7-2	Generalized Linear Least-Squares Analysis for a Second-Order Polynomial with One Independent Variable, 142	
		Problems, 145	
A		TRANSPORT PHENOMENA: FUNDAMENTALS AND APPLICATIONS	153
8	Applic	ations of the Equations of Change in Fluid Dynamics	155
	8-1	Important Variables, 155	
	8-2	Physical Properties in Fluid Dynamics, 156	
	8-3	Fundamental Balance in Momentum Transport, 158	
	8-4	Equation of Motion, 167	
	8-5	Exact Differentials, 173	
	8-6	Low-Reynolds-Number Hydrodynamics, 175	
	8-7	Potential Flow Theory, 205	
		Problems, 222	•
9	Deriva	tion of the Mass Transfer Equation	253
	9-1	Accumulation Rate Process, 253	
	9-2	Rate Processes Due to Mass Flux Across the Surface	

	9-3	Rate Processes Due to Multiple Chemical Reactions, 255	
	9-4	Constructing Integral and Microscopic Descriptions of the Mass Transfer Equation, 256	
	9-5	Diffusional Fluxes in Multicomponent Mixtures, 257	
	9-6	Diffusional Fluxes and Linear Transport Laws in Binary and Pseudo-Binary Mixtures, 260	
	9-7	Simplification of the Mass Transfer Equation for Pseudo-Binary Incompressible Mixtures with Constant Physical Properties, 261	. •
10	Dimen	sional Analysis of the Mass Transfer Equation	265
	10-1	Dimensional Scaling Factors for the Mass Transfer Rate Processes, 265	
	10-2	Dimensionless Form of the Generalized Mass Transfer Equation with Unsteady-State Convection, Diffusion, and Chemical Reaction, 266	
	10-3	Functional Dependence of the Molar Density of Species i Via Dimensional Analysis, 269	
	10-4	Maximum Number of Dimensionless Groups That Can Be Calculated for a Generic Mass Transfer Problem, 271	
		Problems, 272	
11	Lamii Spher	nar Boundary Layer Mass Transfer around Solid res, Gas Bubbles, and Other Submerged Objects	275
	11-1	Boundary Layer Mass Transfer Analysis, 275	
	11-2	Tangential Velocity Component v_{θ} Within the Mass Transfer Boundary Layer, 284	
	11-3	Boundary Layer Solution of the Mass Transfer Equation, 287	
	11-4	Interphase Mass Transfer at the Solid-Liquid Interface, 298	
	11-5	Laminar Boundary Layer Mass Transfer Across a Spherical Gas-Liquid Interface, 303	
	11-6	Boundary Layer Solution of the Mass Transfer Equation Around a Gas Bubble, 306	

	11-7	Interphase Mass Transfer at the Gas-Liquid Interface, 313	
		Problems, 328	
12		asional Analysis of the Equations of Change for Fluid nics Within the Mass Transfer Boundary Layer	361
	12-1	Generalized Dimensionless Form of the Equation of Motion for Incompressible Fluids Undergoing Laminar Flow, 362	
	12-2	Incompressible Newtonian Fluids in the Creeping Flow Regime, 362	
÷	12-3	Locally Flat Momentum Boundary Layer Problem for Laminar Flow Around Solid Spheres, 363	
	12-4	Renormalization of the Dimensionless Variables Reveals Explicit Dependence of g^* on Re, 365	
13		ion and Chemical Reaction Across Spherical iquid Interfaces	369
	13-1	Molar Density Profile, 369	
	13-2	Molar Flux Analysis, 372	
PA]	RT III	KINETICS AND ELEMENTARY SURFACE SCIENCE	381
14		c Mechanisms and Rate Expressions for Heterogeneous e-Catalyzed Chemical Reactions	383
	14-1	Converting Reactants to Products, 383	
	14-2	Isotherms, 384	
	14-3	Single-Site Adsorption of Each Component in a Multicomponent Mixture, 392	
	14-4	Dual-Site Adsorption of Submolecular Fragments, 394	
	14-5	Summary of Adsorption Isotherms for Pure Gases, 397	
	14-6	Hougen-Watson Kinetic Models, 399	
		Description Description of the IZ' of Date of the IZ'	
	14-7	Pressure Dependence of the Kinetic Rate Constant Via Elements of Transition State Theory, 420	
	14-7	_	

PART IV		MASS TRANSFER AND CHEMICAL REACTION IN ISOTHERMAL CATALYTIC PELLETS	
15		ion and Heterogeneous Chemical Reaction in Isothermal	449
	15-1	Complex Problem Descriptions Without Invoking Any Assumptions, 449	
	15-2	Diffusion and Pseudo-Homogeneous Chemical Reactions in Isothermal Catalytic Pellets, 452	
	15-3	Pseudo-First-Order Kinetic Rate Expressions That Can Replace Hougen-Watson Models and Generate Linearized Ordinary Differential Equations for the Mass Balance, 453	. •
	15-4	Diffusion and Heterogeneous Chemical Reactions in Isothermal Catalytic Pellets, 458	
		Problem, 459	
16	Comp Chem	olete Analytical Solutions for Diffusion and Zeroth-Order nical Reactions in Isothermal Catalytic Pellets	461
	16-1	Catalytic Pellets with Rectangular Symmetry, 461	
	16-2	Long, Cylindrically Shaped Catalysts, 464	
	16-3	Spherical Pellets, 466	
	16-4	Redefining the Intrapellet Damkohler Number So That Its Critical Value Might Be the Same for All Pellet Geometries, 468	
		Problems, 470	
17		plete Analytical Solutions for Diffusion and First-Order nical Reactions in Isothermal Catalytic Pellets	473
	17-1	Catalytic Pellets with Rectangular Symmetry, 473	
	17-2	Long, Cylindrically Shaped Catalysts, 475	
	17-3	Spherical Pellets, 476	
		Problems, 480	
18		erical Solutions for Diffusion and nth-Order Chemical tions in Isothermal Catalytic Pellets	483
	18-1	Kinetic Rate Law and Diffusional Flux, 483	

	18-2	Mass Transfer Equation in Three Coordinate Systems, 484	
	18-3	Numerical Results for Second-Order Irreversible Chemical Kinetics, 487	
	18-4	Equivalent Examples with Different Characteristic Length Scales, 488	
19	Nume Chem	rical Solutions for Diffusion and Hougen-Watson ical Kinetics in Isothermal Catalytic Pellets	491
	19-1	Dimensionless Kinetic Rate Law, 491	
	19-2	Mass Balance for Reactant A, 493	
	19-3	Dimensionless Correlation for the Effectiveness Factor in Terms of the Intrapellet Damkohler Number, 497	
	19-4	Dimensionless Correlation for Porous Wafers with Rectangular Symmetry, 500	
	19-5	Numerical Results for $A_2 + B \rightarrow C + D$ in Flat-Slab Wafers with Rectangular Symmetry, 501	
		Problems, 505	
20		al Mass Transfer Limitations in Isothermal tic Pellets	509
	20-1	Reactor Design Strategy, 509	
	20-2	Correlations for Catalysts with Different Macroscopic Symmetry, 512	
	20-3	Effectiveness Factors, 515	
	20-4	Dimensionless Correlation between the Effectiveness Factor and the Intrapellet Damkohler Number, 521	
		Problems, 527	
21		ion Coefficients and Damkohler Numbers Within the al Pores of Catalytic Pellets	539
	21-1	Dependence of Intrapellet Pore Diffusion on Molecular Size, 539	
	21-2	Knudsen Diffusion in Straight Cylindrical Pores, 543	
	21-3	Ordinary Molecular Diffusion in Binary and Pseudo-Binary Mixtures, 544	
	21-4	Estimating Tortuosity Factors and Intrapellet Porosity Based on the Distribution in Orientation and Size of Catalytic Pores Via the Parallel-Pore Model, 553	
		Problems, 558	

PAI	RT V	ISOTHERMAL CHEMICAL REACTOR DESIGN	561
22	Isother	rmal Design of Heterogeneous Packed Catalytic Reactors	563
	22-1	Simplification of the Generalized Mass Transfer Equation for a One-Dimensional Plug Flow Model, 564	
	22-2	Differential Form of the Design Equation for Ideal Packed Catalytic Tubular Reactors Without Interpellet Axial Dispersion, 567	,
	22-3	Design of a Packed Catalytic Tubular Reactor for the Production of Methanol from Carbon Monoxide and Hydrogen, 573	
	22-4	Design of Non-Ideal Heterogeneous Packed Catalytic Reactors with Intrapellet Axial Dispersion, 579	
	22-5	Mass Transfer Peclet Numbers Based on Interpellet Axial Dispersion in Packed Catalytic Tubular Reactors, 592	
	22-6	Applications to a Packed Chromatographic or Ion-Exchange Column, 596	
	22-7	Factors That Must Be Considered in the Design of a Packed Catalytic Tubular Reactor, 597	
		Problems, 601	
23		ogeneous Catalytic Reactors with Metal Catalyst Coated Inner Walls of the Flow Channels	611
	23-1	Convective Diffusion in Catalytic Reactors of Noncircular Cross Section and Nonuniform Catalyst Activity, 611	
	23-2	Fully Developed Fluid Velocity Profiles in Regular Polygon Ducts, 614	
	23-3	Mass Transfer Equation, 619	
	23-4	Details of the Numerical Algorithm, 624	
	23-5	Second-Order Correct Finite-Difference Expressions for First Derivatives on the Boundary of the Flow Cross Section, 627	
	23-6	Viscous Flow, 632	
		Problems, 645	
24	for th	ning a Multicomponent Isothermal Gas-Liquid CSTR ne Chlorination of Benzene to Produce	655
		chlorobenzene	บออ
	24-1	Strategy to Solve This Problem, 656	

	24-2	Gas-Phase Mass Balances with Interphase Mass Transfer, 658	
	24-3	Liquid-Phase Mass Balances with Chemical Reaction, Interphase Transport, and Reaction-Enhanced Mass Transfer Coefficients, 659	
	24-4	Interfacial Equilibrium and Equality of Interfacial Fluxes, 665	
	24-5	Molecular Diffusion in Liquids, 671	
	24-6	Nonlinear Equation Solver Program, 673	
		Problems, 681	
PAI	RT VI	THERMODYNAMICS AND NONISOTHERMAL REACTOR DESIGN	685
25		cal Irreversible Thermodynamics lticomponent Mixtures	687
	25-1	Strategy to Analyze Nonequilibrium Systems, 688	
	25-2	Microscopic Equation of Change for Kinetic Energy, 689	
	25-3	Re-Expressed Equation of Change for Kinetic Energy, 690	
	25-4	Microscopic Equation of Change for Internal Energy Via the First Law of Thermodynamics, 692	
	25-5	Microscopic Equation of Change for Total Energy, 693	
	25-6	Identification of the Molecular Flux of Thermal Energy in the Equation of Change for Total Energy, 695	
	25-7	Equation of Change for Entropy, 696	
	25-8	Rate of Entropy Production in Multicomponent Systems with Chemical Reaction, 697	
	25-9	Linear Relations Between Fluxes and Forces That Obey the Curie Restriction, 701	
	25-10	Coupling Between Diffusional Mass Flux and Molecular Flux of Thermal Energy in Binary Mixtures: The Onsager Reciprocal Relations, 703	
	25-11	Identification of Fourier's Law in the Molecular Flux of Thermal Energy and the Requirement That Thermal Conductivities Are Positive, 705	

	25-12	of Component A in a Binary Mixture, 706	
	25-13	Thermodynamic Evaluation of $(\partial \varphi_A/\partial \omega_A)_{T,p}$ in Binary Mixtures, 708	
	25-14	Connection between Transport Phenomena and Thermodynamics for Diffusional Mass Fluxes and Diffusivities in Binary Mixtures, 709	
	25-15	Liquid-Phase Diffusivities and the Stokes-Einstein Diffusion Equation for Binary Mixtures, 710	
		Problems, 712	
26	and M	ular Flux of Thermal Energy in Binary Iulticomponent Mixtures Via the Formalism nequilibrium Thermodynamics	717
	26-1	Three Contributions to q in Binary Systems, 717	
	26-2	Thermodynamic Analysis of $\varphi_A - T(\partial \varphi_A/\partial T)_{p, \omega_A}$, 719	
	26-3	Analysis of the Interdiffusional Flux of Thermal Energy in Binary Mixtures and Generalization to Multicomponent Mixtures, 723	
		Problems, 724	
27	and N	nal Energy Balance in Multicomponent Mixtures onisothermal Effectiveness Factors Via Coupled Heat lass Transfer in Porous Catalysts	727
	27-1	Equation of Change for Specific Internal Energy That Satisfies the First Law of Thermodynamics, 727	
	27-2	Multicomponent Transport in Porous Catalysts, 731	
	27-3	Nonisothermal Effectiveness Factors in Porous Catalysts, 733	
	27-4	Physicochemical Properties of Gases Within Catalytic Pellets, 737	
	27-5	Estimates of the Maximum Temperature Rise Within Catalytic Pellets for Exothermic Chemical Reactions, 740	
	27-6	Design of a Nonisothermal Packed Catalytic Tubular Reactor, 745	
		Problems, 748	

CONTENT	x	vii
CONTENT	X	vii

28	Statist	ical Thermodynamics of Ideal Gases	757
	28-1	Generalized Postulates, 757	
	28-2	Introduction to Quantum Statistical Mechanics, 758	
	28-3	The Ergodic Problem, 760	
	28-4	% Theorem of Statistical Thermodynamics, 761	
	28-5	Consistency with Classical Thermodynamics, 763	
	28-6	Internal Energy and Heat Capacity of Monatomic Ideal Gases, 768	
	28-7	Diatomic Gases, 768	
	28-8	Entropy and Chemical Potential, 776	
		Problems, 780	
29		odynamic Stability Criteria for Single-Phase geneous Mixtur e s	785
	29-1	Energy Representation of the Fundamental Equation and Exact Differentials, 785	
	29-2	Legendre Transformations, 787	
	29-3	Euler's Integral Theorem for Homogeneous Functions of Order m, 790	
	29-4	Gibbs-Duhem Equation, 794	
	29-5	Analysis of Partial Derivatives Via Jacobian Transformations, 795	
	29-6	Thermodynamic Stability Relations, 798	
30		ed Heat and Mass Transfer in Packed Catalytic Tubular ors That Account for External Transport Limitations	821
	30-1	Intrapellet and Bulk Species Concentrations, 823	
	30-2	Intrapellet and Bulk Gas Temperature, 825	
	30-3	Evaluation of $C_{A, \text{surface}}$ Via the Effectiveness Factor: Complete Strategy for Packed Catalytic Tubular Reactors, 830	
	30-4	Reactor Design, 835	
	30-5	Maximum Conversion in Non-Ideal Packed Catalytic Tubular Reactors Under Isothermal Conditions, 842	

cviii	CONTENT

30-6	Analysis of First-Order Irreversible Chemical Kinetics in Ideal Packed Catalytic Tubular Reactors When The External Resistances to Heat and Mass Transfer Cannot Be Neglected, 845	
	Problems, 852	

References	86

Index	865