

SYNTHETIC STRATEGIES, PHYSICAL PROPERTIES, AND APPLICATIONS

Nikos Hadjichristidis Stergios Pispas George A. Floudas

CONTENTS

Pref	ace	9		xiii
Abb	rev	riati	ons and Symbols	(Vii
I	ΒL	.00	K COPOLYMER SYNTHESIS	1
	1	1. 2. 3.	OCK COPOLYMERS BY ANIONIC POLYMERIZATION Synthesis of AB Diblock Copolymers / 4 Synthesis of Triblock Copolymers / 11 Linear Block Copolymers With More Than Three Blocks / 23 OCK COPOLYMERS BY CATIONIC POLYMERIZATION	28
	3			47
		1. 2.	Synthesis of AB Diblock Copolymers / 48 Synthesis of ABA Triblock Copolymers / 58	71

		ABCD Tetrablock Quarterpolymers / 61	
4		OCK COPOLYMERS BY GROUP TRANSFER	65
	1.	Synthesis of AB Diblock Copolymers / 66	
	2.	Synthesis of ABA Triblock Copolymers / 72	
	3.	Synthesis of ABC Triblock Terpolymers / 75	
5		OCK COPOLYMERS BY RING OPENING TATHESIS POLYMERIZATION	80
	1.	Synthesis of AB Diblock Copolymers / 82	
	2.	Synthesis of ABA Triblock Copolymers / 88	
6	CO	NTHESIS OF BLOCK COPOLYMERS BY A MBINATION OF DIFFERENT POLYMERIZATION THODS	91
	1.	Synthesis of Block Copolymers by Anionic to Cationic Mechanism Transformation / 92	
	2.	Synthesis of Block Copolymers by Anionic to Living Free Radical Mechanism Transformation / 94	
	3.	Synthesis of Block Copolymers by Cationic to Anionic Mechanism Transformation / 97	
	4.	Synthesis of Block Copolymers by Cationic to Onium Mechanism Transformation / 98	
	5.	Synthesis of Block Copolymers by Cationic to Living Free Radical Mechanism Transformation / 100	
	6.	Synthesis of Block Copolymers by Living Free Radical to Cationic Mechanism Transformation / 102	
	7.	Synthesis of Block Copolymers by Ring Opening Metathesis to Living Free Radical Mechanism Transformation / 103	
	8.	Synthesis of Block Copolymers by Ring Opening Metathesis to Group Transfer Mechanism Transformation / 104	
	9.	Other Combinations / 105	
	10.	Bifunctional (DUAL) Initiators / 107	
	11.	Synthesis of Block Copolymers by Direct Coupling of Preformed Living Blocks / 107	
	12.	Synthesis of Block Copolymers by Coupling of End-functionalized Prepolymers / 110	

3. Synthesis of ABC Triblock Terpolymers and

			CONTENTS	ix
7		NTHESIS OF BLOCK COPOLYMERS BY EMICAL MODIFICATION		114
	1.	Hydrogenation / 115		
	2.	Hydrolysis / 116		
	3.	Quaternization / 117		
	4.	Sulfonation / 118		
	5.	Hydroboration/Oxidation / 119		
	6.	Epoxidation / 121		
	7.	Chloro/BromoMethylation / 121		
	8.	Hydrosilylation / 123		
8	NC	NLINEAR BLOCK COPOLYMERS		126
	1.	Star Block Copolymers / 126		
	2.	Graft Copolymers / 134		
	3.	Miktoarm Star Copolymers / 142		
	4.	Other Complex Architectures / 156		
		ECULAR CHARACTERIZATION OF CK COPOLYMERS		173
9		OLECULAR CHARACTERIZATION OF LOCK COPOLYMERS		175
	1.	Purification of Block Copolymers by Fractionation	/ 175	
		Molecular Characterization / 177		
91	∩LI	JTION PROPERTIES OF		
		CK COPOLYMERS		195
10		ILUTE SOLUTIONS OF BLOCK COPOLYMER ONSELECTIVE SOLVENTS	S IN	197
11	ם	ILUTE SOLUTIONS OF BLOCK COPOLYMER	S IN	

203

SELECTIVE SOLVENTS

1. 2.

3.

Thermodynamics of Micellization / 203

Phenomenology of Block Copolymer Micellar Structure / 206

Experimental Techniques for Studying Micelle Formation / 207 Equilibrium Structure of Block Copolymer Micelles / 215

5. Effect of Architecture / 219	
6. Kinetics of Micellization / 222	
7. Solubilization of Low Molecular Weight Substances in	
Block Copolymer Micelles / 224	
8. Ionic Block Copolymer Micelles / 225	
12 ADSORPTION OF BLOCK COPOLYMERS AT SOLID-LIQUID INTERFACES	232
1. Phenomenology of Block Copolymer Adsorption / 232	
2. Experimental Techniques for Studying Block	
Copolymer Adsorption / 235	
3. Theories of Block Copolymer Adsorption / 242	
4. Experiments on Block Copolymer Adsorption / 246	
PHYSICAL PROPERTIES OF	055
BLOCK COPOLYMERS	255
13 THEORY	257
1. Strong Segregation Limit (SSL) / 257	
2. Weak Segregation Limit (WSL) / 259	
3. Structure Factor / 261	
 Intermediate Segregation Limit (ISL) and Self-consistent Field Theory (SCFT) / 263 	
14 STRUCTURE FACTOR AND CHAIN ARCHITECTURE	268
	200
1. Graft Copolymers / 269	
2. A _n B _n Star Block Copolymers / 274	
 (AB)_p STAR COPOLYMERS / 277 ABA Triblock Copolymers / 280 	
5. Tapered Block Copolymers / 281	
6. Multiblock Copolymers / 282	
o. Mundolock Copolymero / 202	
15 BLOCK COPOLYMER PHASE STATE	286
1. Fluctuation Effects / 287	
2. Conformational Asymmetry / 290	
3. The Known Phase Diagrams / 292	
4. The PEO-PI Phase Diagram / 294	
5. The PS-PI-PEO Phase Diagram / 295	

298

17	P	HASE TRANSFORMATION KINETICS	313
	1.	Detection and Analysis of the Ordering Kinetics / 314	
	2.	The Equilibrium Order-to-disorder Transition Temperature / 31	8
	3.	Effect of Fluctuations / 320	
	4.	Grain Growth / 322	
	5.	Effect of Block Copolymer Architecture / 325	
	6.	Transitions Between Different Ordered States / 327	
18	_	LOCK COPOLYMERS WITH STRONGLY ITERACTING GROUPS	335
	1.	Cylinder-forming Functionalized SI Diblock Copolymers / 337	,
	2.	Lamellar-forming Functionalized Diblock and Triblock Copolymers / 340	
	3.	ABC Block Copolymers With a Short but Strongly Interacting Middle Block / 342	
	4.	Effect of Salt on the Lamellar Spacing and Microdomain Morphology / 344	
19	В	LOCK COPOLYMER MORPHOLOGY	346
	1.	Rod-Coil Copolymers / 346	
	2.	ABC Triblock Terpolymers / 352	
	3.	More Complexity With ABCs / 353	
	4.	ABC Miktoarm Star Terpolymers With Amorphous Blocks / 3	55
	5.	ABC Star Terpolymers With Crystallizable Blocks / 357	
	6.	Architecture-induced Phase Transformations / 358	
20	В	LOCK COPOLYMER DYNAMICS	362
	1.	Dynamic Structure Factor of Disordered Diblock Copolymers /	362
	2.	Dynamic Structure Factor of Ordered Diblock Copolymers / 3	66
	3.	Dielectric Relaxation in Diblock Copolymers in the Disordered and Ordered Phases / 370	

1. Localization of the (Apparent) Order-to-Disorder Transition / 300

Flow-induced Alignment of Block Copolymer Melts / 305

2. Viscoelastic Spectrum of Block Copolymers / 301

Viscoelastic Response of Ordered Phases / 303

16 VISCOELASTIC PROPERTIES OF BLOCK COPOLYMERS

3.

4.

		4. 5.	Dynamic Interfacial Width in Block Copolymers / 373 Dielectric Relaxation in Block Copolymer/ Homopolymer Blends / 376	
٧	AF	PL	ICATIONS	383
	21	В	LOCK COPOLYMER APPLICATIONS	385
•			Commercialized Applications / 386 Potential Applications / 397	
Inde	ЭХ			409

xii

CONTENTS