
An Introduction to Theoretical Chemistry

Jack Simons

Contents

	Armoveled from outs	
Ack	nowledgements	xiii
Par	t I Background material	1
1 T	1 The basics of quantum mechanics	
1.1	Why quantum mechanics is necessary for describing	
	molecular properties	3
1.2	The Schrödinger equation and its components	11
	1.2.1 Operators	11
	1.2.2 Wave functions	14
	1.2.3 The Schrödinger equation	16
1.3	Your first application of quantum mechanics – motion of a	
	particle in one dimension	21
	1.3.1 Classical probability density	21
	1.3.2 Quantum treatment	23
	1.3.3 Energies and wave functions	23
	1.3.4 Probability densities	25
	1.3.5 Classical and quantum probability densities	27
	1.3.6 Time propagation of wave functions	30
1.4	Free particle motions in more dimensions	36
	1.4.1 The Schrödinger equation	36
	1.4.2 Boundary conditions	37
	1.4.3 Energies and wave functions for bound states	39
	1.4.4 Quantized action can also be used to derive	
	energy levels	41
	1.4.5 Quantized action does not always work	43
2 N	lodel problems that form important starting points	46
2.1	Free electron model of polyenes	46
2.2	Bands of orbitals in solids	50

Contents

2.3	Densities of states in one, two, and three dimensions	53
	The most elementary model of orbital energy splittings: Hückel	
	or tight-binding theory	56
2.5	Hydrogenic orbitals	64
	2.5.1 The Φ equation	65
	2.5.2 The ⊕ equation	66
	2.5.3 The R equation	68
	2.5.4 Summary	72
2.6	Electron tunneling	73
2.7	Angular momentum	80
	2.7.1 Orbital angular momentum	80
	2.7.2 Properties of general angular momenta	81
	2.7.3 Summary	85
	2.7.4 Coupling of angular momenta	86
2.8	Rotations of molecules	94
	2.8.1 Rotational motion for rigid diatomic and linear	
	polyatomic molecules	94
	2.8.2 Rotational motions of rigid non-linear	
	molecules	96
2.9	Vibrations of molecules	99
3 0	Characteristics of energy surfaces	104
3.1	Strategies for geometry optimization	104
3.2	Normal modes of vibration	109
	3.2.1 The Newton equations of motion for vibration	109
	3.2.2 The use of symmetry	111
4 5	Some important tools of theory	116
4.1	Perturbation theory and the variational method	116
	4.1.1 Perturbation theory	117
	4.1.2 The variational method	121
4.2	Point group symmetry	125
	4.2.1 The C_{3v} symmetry group of ammonia – an example	125
	4.2.2 Matrices as group representations	126
	4.2.3 Reducible and irreducible representations	130
	4.2.4 Another example	134
	4.2.5 Projection operators: symmetry-adapted linear	
	combinations of atomic orbitals	136
	4.2.6 Summary	137
	4.2.7 Direct product representations	139
	4.2.8 Overview	142

Par	t II Three primary areas of theoretical chemistry	143
5 A	an overview of theoretical chemistry	145
	What is theoretical chemistry about?	145
5.1	Molecular structure – bonding, shapes, electronic structures	145
5.2	Molecular change – reactions, isomerization, interactions	149
	5.2.1 Changes in bonding	149
	5.2.2 Energy conservation	151
	5.2.3 Conservation of orbital symmetry –	
	the Woodward-Hoffmann rules	151
	5.2.4 Rates of change	154
5.3	Statistical mechanics: treating large numbers of molecules in	
	close contact	157
	Molecular structure: theory and experiment	160
5.4	Experimental probes of molecular shapes	160
	5.4.1 Rotational spectroscopy	160
	5.4.2 Vibrational spectroscopy	164
	5.4.3 X-ray crystallography	167
	5.4.4 NMR spectroscopy	168
5.5	Theoretical simulation of structures	173
	Chemical change	175
5.6	Experimental probes of chemical change	175
5.7	Theoretical simulation of chemical change	179
6 E	lectronic structures	184
	Theoretical treatment of electronic structure: atomic and	
	molecular orbital theory	184
6.1	Orbitals	185
	6.1.1 The Hartree description	185
	6.1.2 The LCAO expansion	187
	6.1.3 AO basis sets	188
	6.1.4 The Hartree-Fock approximation	191
	6.1.5 Molecular orbitals	196
6.2	Deficiencies in the single determinant model	200
	6.2.1 Electron correlation	201
	6.2.2 Essential configuration interaction	203
	6.2.3 Various approaches to electron correlation	208
6.3	Molecules embedded in condensed media	222
6.4	High-end methods for treating electron correlation	223
	6.4.1 Quantum Monte-Carlo	223
	6.4.2 The $r_{1,2}$ method	225
	Experimental probes of electronic structure	226

Contents

6.5	Visible and ultraviolet spectroscopy	226
	6.5.1 Electronic transition dipole and use of point group symmetry	226
	6.5.2 The Franck-Condon factors	227
	6.5.3 Time correlation function expressions for transition rates	232
	6.5.4 Line broadening mechanisms	235
6.6	Photoelectron spectroscopy	245
6.7	Probing continuum orbitals	248
7 S	tatistical mechanics	256
	Collections of molecules at or near equilibrium	256
7.1	Distribution of energy among levels	256
7.2	Partition functions and thermodynamic properties	265
7.3	Equilibrium constants in terms of partition functions	270
7.4	Monte-Carlo evaluation of properties	271
7.5	Molecular dynamics simulations of properties	276
7.6	Time correlation functions	278
	Some important chemical applications of statistical mechanics	284
7.7	Gas-molecule thermodynamics	284
7.8	Einstein and Debye models of solids	285
7.9	Lattice theories of surfaces and liquids	288
7.10	Virial corrections to ideal-gas behavior	296
8 C	hemical dynamics	301
	Theoretical tools for studying chemical change and dynamics	301
8.1	Transition state theory	301
8.2	Variational transition state theory	305
8.3	Reaction path Hamiltonian theory	306
8.4	Classical dynamics simulation of rates	310
8.5	RRKM theory	312
8.6	Correlation function expressions for rates	315
8.7	Wave packet propagation	318
8.8	Surface hopping dynamics	323
	Experimental probes of reaction dynamics	325
8.9	Spectroscopic methods	325
	Beam methods	327
8.11	Other methods	329
Prol	olems	331
	ations	361
	Appendix: Character tables	
Index		452 459