Abstract Algebra

Ronald Solomon

THE BROOKS/COLE SERIES IN ADVANCED MATHEMATICS Paul J. Sally, Jr., EDITOR

CONTENTS

0	Background	7
Section	on One Geometry	13
1	What Is Congruence?	14
2	Some Two-Dimensional Geometry	22
3	Symmetry	32
Section	on Two Polynomials	45
4	The Root of It All	46
5	The Renaissance of Algebra	49
6	Complex Numbers	59
7	Symmetric Polynomials and The Fundamental Theorem of Algebra	68
8	Permutations and Lagrange's Theorem	78
9	Orbits and Cauchy's Formula	86
9A	Hamilton's Quaternions (Optional)	95
Section Three Numbers		101
10	Back to Euclid	102
11	Euclid's Lemma for Polynomials	113
12	Fermat and the Rebirth of Number Theory	122
13	Lagrange's Theorem Revisited	136
14	Rings and Squares	142
14A	More Rings and More Squares	149
15	Fermat's Last Theorem (for Polynomials)	157
15A	Still more Fermat's Last Theorem (Optional)	₋ 165

xii CONTENTS

Section	on Four The Grand Synthesis	169
16	Constructible Polygons and the Method of Mr. Gauss	170
17	Cyclotomic Fields and Linear Algebra	177
18	A Lagrange Theorem for Fields and Nonconstructibility	191
19	Galois Fields and the Fundamental Theorem of Algebra Revisited	196
20	Galois' Theory of Equations	207
21	The Galois Correspondence	212
22	Constructible Numbers and Solvable Equations	217
Index		223