Automatic Control Systems

Benjamin C. Kuo Farid Golnaraghi

Table of Contents

refac	e v			APTER 3 Diagrams	and Signal-Flow Graphs 44
CHAPTER 1 htroduction 1			3-1	Block Diagrams 44	
itroat	JCUOII 1			3-1-1	Block Diagrams of Control Systems 45
1-1	Introduct			3-1-2	Block Diagrams and Transfer Functions of
	1-1-1	Basic Components of a Control System 2			Multivariable Systems 46
	1-1-2	Examples of Control-System	3-2		ow Graphs (SFGs) 48
		Applications 2		3-2-1	Basic Elements of an SFG 49
	1-1-3	Open-Loop Control Systems (Nonfeed- back Systems) 6		3-2-2	Summary of the Basic Properties of SFG 50
	1-1-4	Closed-loop Control Systems (Feedback		3-2-3	Definitions of SFG Terms 51
		Control Systems) 7		3-2-4	SFG Algebra 53
1-2	What is	Feedback and What are its Effects? 8		3-2-5	SFG of a Feedback Control System 54
	1-2-1	Effect of Feedback on Overall Gain 8		3-2-6,	Gain Formula for SFG 54
	1-2-2	Effect of Feedback on Stability 9		3-2-7	Application of the Gain Formula between
	1-2-3	Effect of Feedback on External			Output Nodes and Noninput Nodes 56
		Disturbance or Noise 10		3-2-8	Application of the Gain Formula to Block
1-3	Types of	Feedback Control Systems 11			Diagrams 57
	1-3-1	Linear versus Nonlinear Control	3-3	State Diag	
		Systems 11		3-3-1	From Differential Equations to State
	1-3-2	Time-Invariant versus Time-Varying			Diagram 59
		Systems 12		3-3-2	From State Diagram to Transfer
1-4	Summar	y 15			Function 61
CHAPTER 2				3-3-3	From State Diagram to State and Output Equations 61
fathe	matical F	oundation 16	3-4	MATLAB	Tools and Case Studies 63
2-1	Introduct	tion 16	3-5	Summary	65
2-2	Laplace	Transform 17			
	2-2-1	Definition of the Laplace Transform 17	_	APTER 4	
	2-2-2	Inverse Laplace Transformation 18	Mode	ling of Phy	rsical Systems 77
	2-2-3	Important Theorems of the Laplace	4-1	Introducti	on 77
		Transform 19			of Electrical Networks 77
2-3	Inverse I	aplace Transform by Partial-Fraction	4-3		of Mechanical Systems Elements 80
		sion 21		4-3-1	Translational Motion 80
	2-3-1	Partial-Fraction Expansion 22		4-3-2	Rotational Motion 83
2-4	Applicati	ion of the Laplace Transform to the Solution		4-3-3	Conversion Between Translational and
		ear Ordinary Differential Equations 25			Rotational Motions 85
2-5		Response and Transfer Functions of Linear		4-3-4	Gear Trains 86
	Systen			4-3-5	Backlash and Dead Zone (Nonlinear
	2-5-1	Impulse Response 27			Characteristics) 88
	2-5-2	Transfer Function (Single-Input, Single-	4-4	Equations	of Mechanical Systems 89
		Output Systems) 27	4-5		nd Encoders in Control Systems 94
	2-5-3	Transfer Function (Multivariable		4-5-1	Potentiometer 94
		Systems) 29		4-5-2	Tachometers 99
2-6	MATLA	B Tools and Case Studies 30		4-5-3	Incremental Encoder 100
	2-6-1	Description and Use of Transfer Function	4-6		rs in Control Systems 103
		Tool 30		4-6-1	Basic Operational Principles of DC

2-7 Summary 41

Motors 104

	4-6-2	Basic Classifications of PM DC	5-11		ility of Linear Systems 173
		Motors 104		5-11-1	•
	4-6-3	Mathematical Modeling of PM DC Motors 107	5-12		thip Among Controllability, Observability,
		tion of Nonlinear Systems 110			ansfer Functions 175
4-8		with Transportation Lags (Time Delays) 114	5-13		Theorems on Controllability and
	4-8-1	Approximation of the Time-Delay Function			ability 177
		by Rational Functions 115	5-14		llustrative Example: Magnetic-Ball
4-9		eker System 116			nsion System 178
	4-9-1	Coordinate System 117	5-15		B Tools and Case Studies 181
	4-9-2	Error Discriminator 117		5-15-1	Description and Use of the State-Space
	4-9-3	Op-Amp 118			Analysis Tool 182
	4-9-4	Servoamplifier 118		5-15-2	Description and Use of tfsym for State-
	4-9-5	Tachometer 118		5 15 0	Space Applications 189
4.10	4-9-6	DC Motor 118	- 1/	5-15-3	Another Example 189
		3 Tools and Case Studies 120	5-16	Summar	y 195
4-11	Summary	120			
				APTER 6 tv of Line	ar Control Systems 211
	APTER 5 Variable A	malysis 138			
State 1		·		Introduct	Input, Bounded-Output (BIBO) Stability—
5-1			0-2		nous-Data Systems 212
5-2		atrix Representation of State		6-2-1	Relationship between Characteristic
		ons 138		0-2-1	Equation Roots and Stability 212
5-3		nsition Matrix 140	6-3	Zero-Inn	ut and Asymptotic Stability of Continuous-
	5-3-1	Significance of the State-Transition	0-5		systems 213
	5 2 2	Matrix 141	6-4		of Determining Stability 215
	5-3-2	Properties of the State-Transition			urwitz Criterion 216
- 4	O . T	Matrix 142	0-5	6-5-1	Routh's Tabulation (1) 217
3-4		nsition Equation 143		6-5-2	Special Cases When Routh's Tabulation
	5-4-1	State-Transition Equation Determined from		052	Terminates Prematurely 219
5.5	Dalations	the State Diagram 145 hip between State Equations and High-	6-6	MATLA	B Tools and Case Studies 222
3-3		Differential Equations 147	6-7		
5-6		hip between State Equations and Transfer			,
3-0				APTER 7	
5-7	Functions 149 Characteristic Equations, Eigenvalues, and		Time-Domain Analysis of Control		
5-1		ectors 151	Syster	ns 233	
	5-7-1	Eigenvalues 152	7-1	Time Re	sponse of Continuous-Data Systems:
	5-7-2	Eigenvectors 153			uction 233
5-8		Transformation 155	4-2		Test Signals for the Time Response of
	5-8-1	Invariance Properties of the Similarity		Contro	ol Systems 234
		Transformations 156	3 -3		-Step Response and Time-Domain
	5-8-2	Controllability Canonical Form (CCF) 156	,		ications 236
	5-8-3	Observability Canonical Form (OCF) 158	7-4	_	tate Error 237
	5-8-4	Diagonal Canonical Form (DCF) 159		7-4-1	Steady-State Error of Linear Continuous-
	5-8-5	Jordan Canonical Form (JCF) 160			Data Control Systems 237
5-9	Decompo	ositions of Transfer Functions 161		7-4-2	Steady-State Error Caused by Nonlinear
	5-9-1	Direct Decomposition 162			System Elements 249
	5-9-2	Cascade Decomposition 166	7-5	Time Re	sponse of a First-Order System 251
	5-9-3	Parallel Decomposition 167		7-5-1	Speed Control of a DC Motor 251
5-10	Controlla	bility of Control Systems 169	7-6		t Response of a Prototype Second-Order
	5-10-1	General Concept of Controllability 170		-	n 253
	5-10-2	Definition of State Controllability 171		7-6-1	Damping Ratio and Damping Factor 253
	5-10-3	Alternate Tests on Controllability 171		7-6-2	Natural Undamped Frequency 255

	7-6-3 7-6-4 7-6-5	Maximum Overshoot 257 Delay Time and Rise Time 259 Settling Time 261	8-4	Design Aspects of the Root Loci 330 8-4-1 Effects of Adding Poles and Zeros to $G(s)H(s). 330$
7-7	Time-Domain Analysis of a Position-Control System 265		8-5	Root Contours (RC): Multiple-Parameter Variation 336
	7-7-1	Unit-Step Transient Response 268	8-6	Root Locus with the MATLAB Toolbox 342
	7-7-2	The Steady-State Response 271	8-7	Summary 345
	7-7-3	Time Response to a Unit-Ramp Input 271	~ 0114	
	7-7-4	Time Response of a Third-Order		APTER 9 Drcy-Domain Analysis 352
		System 273	· -	Introduction 352
7-8	Effects of Adding Poles and Zeros to Transfer		<i>7</i> -1	9-1-1 Frequency Response of Closed-Loop
	Functions 276			Systems 353
	7-8-1	Addition of a Pole to the Forward-Path		9-1-2 Frequency-Domain Specifications 355
		Transfer Function: Unity-Feedback Systems 276	9-2	
	7-8-2	Addition of a Pole to the Closed-Loop		9-2-1 Resonant Peak and Resonant
		Transfer Function 277		Frequency 356
	7-8-3	Addition of a Zero to the Closed-Loop		9-2-2 Bandwidth 358
		Transfer Function 279	9-3	Effects of Adding a Zero to the Forward-Path
	7-8-4	Addition of a Zero to the Forward-Path	9-3	Transfer Function 360
		Transfer Function: Unity-Feedback	0_1	Effects of Adding a Pole to the Forward-Path
		Systems 280) -	Transfer Function 364
7-9		Poles of Transfer Functions 281	9-5	
	7-9-1	The Relative Damping Ratio 282	7-5	9-5-1 Stability Problem 366
	7-9-2	The Proper Way of Neglecting the Insignificant Poles with Consideration		9-5-2 Definition of Encircled and Enclosed 366
		of the Steady-State Response 282		9-5-3 Number of Encirclements and
-10		roximation of High-Order Systems by Low-		Enclosures 367
		System the Formal Approach 283		9-5-4 Principle of the Argument 368
	7-10-1	Approximation Criterion 284		9-5-5 Nyquist Path 372
'-1 1		3 Tools and Case Studies 293		9-5-6 Nyquist Criterion and the $L(s)$ or the
'-12	Summary	<i>1</i> 307	9.6	G(s)H(s) plot 373 Nyquist Criterion for Systems with Minimum-Phase
CHAPTER 8			9-0	Transfer Functions 374
oot-L	ocus Tec	hnique 318		9-6-1 Application of the Nyquist Criterion to
8. 1	Introduct	ion 319		Minimum-Phase Transfer Functions that
8-2		operties of the Root Loci (RL) 319		Are Not Strictly Proper 375
8-3		s of the Root Loci 323	9-7	Relation Between the Root Loci and the Nyquist
	8-3-1	$K = 0$ and $K = \pm \infty$ Points 323		Plot 376
	8-3-2	Number of Branches on the Root Loci 324	9 -8	Illustrative Examples: Nyquist Criterion for Minimum-Phase Transfer Functions 378
	8-3-3	Symmetry of the RL 324	9-9	Effects of Addition of Poles and Zeros to $L(s)$ on the
	8-3-4	Angles of Asymptotes of the RL: Behavior		Shape of the Nyquist Plot 382?
		of the RL at $ s = \infty$ 324	9-10	Relative Stability: Gain Margin and Phase
	8-3-5	Intersect of the Asymptotes (Centroid) 325		Margin 386
	8-3-6	Root Loci on the Real Axis 325		9-10-1 Gain Margin (GM) 388
	8-3-7	Angles of Departure and Angles of Arrival of the RL 325	9-11	9-10-2 Phase Margin (PM) 389 Stability Analysis with the Bode Plot 392
	8-3-8	Intersection of the RL with the Imaginary Axis 326		9-11-1 Bode Plots of Systems with Pure Time Delays 394
	8-3-9	Breakaway Points (Saddle Points) on the RL 326	9-12	Relative Stability Related to the Slope of the Magnitude Curve of the Bode Plot 396
	8-3-10	The Root Sensitivity [17, 18, 19] 326		9-12-1 Conditionally Stable System 396

9-13	Stability Analysis with the Magnitude-Phase	10-11-1 Rate-Feedback of Tachometer-Feedback Control 531		
9-14	Plot 399 Constant-M Loci in the Magnitude-Phase Plane: The	10-11-2 Minor-Loop Feedback Control with Active Filter 532		
9-15	Nichols Chart 400 Nichols Chart Applied to Nonunity-Feedback Systems 406	10-12 State-Feedback Control 534 10-13 Pole-Placement Design through State		
9-16	Sensitivity Studies in the Frequency Domain 407	Feedback 535		
9-17	MATLAB Tools and Case Studies 409	10-14 State Feedback with Integral Control 540		
9-18	Summary 421	10-15 MATLAB Tools and Case Studies 545 10-16 Summary 558		
	APTER 10	> CHAPTER 11		
-	of Control Systems 433	The Virtual Lab 578		
10-1	Introduction 433	11-1 Introduction 578		
	10-1-1 Design Specifications 433	11-2 Important Aspects in the Response of a DC		
	10-1-2 Controller Configurations 435 10-1-3 Fundamental Principles of Design 437	Motor 579		
	10-1-3 Fundamental Principles of Design 437	11-2-1 Speed Response and the Effects of Inductance and Disturbance-Open Loop		
10-2	Design with the PD Controller 438 10-2-1 Time-Domain Interpretation of PD	Response 579		
	10-2-1 Time-Domain Interpretation of PD Control 440			
	10-2-2 Frequency-Domain Interpretation of PD	11-2-2 Speed Control of DC Motors: Closed-Loop Response 581		
	Control 442	[1-2-3 Position Control 582		
	10-2-3 Summary of Effects of PD Control 442	11-3 Description of the Virtual Experimental		
10-3		System 583		
100	10-3-1 Time-Domain Interpretation and Design of	11-3-1 Motor 584		
	PI Control 456	11-3-2 Position Sensor or Speed Sensor 584		
	10-3-2 Frequency-Domain Interpretation and	11-3-3 Power Amplifier 584		
	Design of PI Control 456	11-3-4 Interface 584		
10-4	Design with the PID Controller 468	11-4 Description of SIMLab and Virtual Lab		
10-5	Design with Phase-Lead Controller 471	Software 585		
	10-5-1 Time-Domain Interpretation and Design of	11-5 Simulation and Virtual Experiments 589		
	Phase-Lead Control 473	11-5-1 Open-Loop Speed 589		
	10-5-2 Frequency-Domain Interpretation and Design of Phase-Lead Control 474	11-5-2 Open-Loop Sine Input 591		
		11-5-3 Speed Control 593 11-5-4 Position Control 396		
	10-5-3 Effects of Phase-Lead Compensation 489			
	10-5-4 Limitations of Single-Stage Phase-Lead	11-6 Design Project 598 11-7 Summary 603		
	Control 489	11-7 Summary 600		
	10-5-5 Multistage Phase-Lead Controller 489	► INDEX 606		
	10-5-6 Sensitivity Considerations 493	PINDEX 000		
10-6	Design with Phase-Lag Controller 494	► APPENDIX A		
	10-6-1 Time-Domain Interpretation and Design of	Complex Variable Theory CD-ROM		
	Phase-Lag Control 494	Complete variables was y		
	10-6-2 Frequency-Domain Interpretation and	► APPENDIX B		
	Design of Phase-Lag Control 496	Differential and Difference Equations CD-ROM		
	10-6-3 Effects and Limitations of Phase-Lag			
	Control 506	> APPENDIX C		
10-1	7 Design with Lead-Lag Controller 507	Elementary Matrix Theory and Algebra CD-ROM		
10-	8 Pole-Zero Cancellation Design: Notch Filter 508 10-8-1 Second-Order Active Filter 511	•		
		► APPENDIX D		
	10-8-2 Prequency-Domain Interpretation and Design 512	Laplace Transform Table CD-ROM		
10	9 Forward and Feedforward Controllers 520	·		
፲ ህ- 1ሴ.1	10 Design of Robust Control Systems 521	> APPENDIX E		
10-1		Operational Amplifiers CD-ROM		
10.1				

CD-ROM

Frequency-Domain Plots CD-ROM

➤ APPENDIX H General Nyquist Criterion CD-ROM

➤ APPENDIX G

► APPENDIX I Discrete-Data Control Systems CD-ROM

APPENDIX J z-Transform Table CD-ROM

APPENDIX K

ACSYS 2002: Description of the Software CD-ROM

ANSWERS TO SELECTED PROBLEMS