Complex Polynomials

TERRY SHEIL-SMALL

Contents

page xi

Preface

	List of	List of notation			
l	The algebra of polynomials				
	1.1	Complex polynomials	1		
	1.2	The number of zeros of a real analytic polynomial	4		
	1.3	Real analytic polynomials at infinity	13		
2	The degree principle and the fundamental theorem				
	of algebra				
	2.1	The fundamental theorem of algebra	22		
	2.2	Continuous functions in the plane	26		
	2.3	The degree principle	31		
	2.4	The degree principle and homotopy	40		
	2.5	The topological argument principle	43		
	2.6	The coincidence theorem	47		
	2.7	Locally 1–1 functions	5€		
	2.8	The Borsuk-Ulam theorem	79		
3	The Jacobian problem		81		
	3.1	The Jacobian conjecture	81		
	3.2	Pinchuk's example	90		
	3.3	Polynomials with a constant Jacobian	105		
	3.4	A topological approach	118		
	3.5	The resultant and the Jacobian	124		
1	Analytic and harmonic functions in the unit disc				
	4.1	Series representations	125		
	4.2	Positive and bounded operators	138		
	4.3	Positive trigonometric polynomials	144		
	4.4	Some inequalities for analytic and trigonometric			
		polynomials	151		

	4.5	Cesàro means	156
	4.6	De la Vallée Poussin means	160
	4.7	Integral representations	167
	4.8	Generalised convolution operators	168
5	Circular regions and Grace's theorem		
•	5.1 Convolutions and duality		172
	5.2	Circular regions	178
	5.3	The polar derivative	184
	5.4	Locating critical points	186
	5.5	Critical points of rational functions	190
	5.6	The Borwein-Erdélyi inequality	193
	5.7	Univalence properties of polynomials	196
	5.8	Linear operators	203
6	The Il	The Ilieff-Sendov conjecture	
	6.1	Introduction	206
	6.2	Proof of the conjecture for those zeros on the unit circle	207
	6.3	The direct application of Grace's theorem	208
	6.4	A global upper bound	213
	6.5	Inequalities relating the nearest critical point to the	
		nearest second zero	216
	6.6	The extremal distance	- 221
	6.7	Further remarks on the conjecture	223
7	Self-inversive polynomials		228
	7.1	Introduction	228
	7.2	Polynomials with interspersed zeros on the unit circle	232
	7.3	Relations with the maximum modulus	238
•	7.4	Univalent polynomials	241
	7.5	A second necessary and sufficient condition for angular	
		separation of zeros	249
	7.6	Suffridge's extremal polynomials	251
8	Duali	ty and an extension of Grace's theorem to rational	
	fur	functions	
	8.1	Linear operators and rational functions	263
	8.2	Interpretations of the convolution conditions	270
	8.3	The duality theorem for $T(1, \beta)$	275
	8.4	The duality theorem for $T(m, \beta)$	282
	8.5	The duality principle	286
	8.6	Duality and the class $T(\alpha, \beta)$	289
	8.7	Properties of the Kaplan classes	293
	8.8	The class $S(\alpha, \beta)$	296

	8.9	The classes $T_0(\alpha, \beta)$	300
	8.10	The class $T(2, 2)$	302
9	Real polynomials		304
	9.1	Real polynomials	304
	9.2	Descartes' rule of signs	317
	9.3	Strongly real rational functions	319
	9.4	Critical points of real rational functions	323
	9.5	Rational functions with real critical points	325
	9.6	Real entire and meromorphic functions	326
10			350
	10.1	Level regions for polynomials	350
	10.2	Level regions of rational functions	353
	10.3	Partial fraction decomposition	355
-	10.4	Smale's conjecture	358
11	Miscel	laneous topics	370
	11.1	The abc theorem	370
	11.2	Cohn's reduction method	372
	11.3	Blaschke products	373
	11.4	Blaschke products and harmonic mappings	377
	11.5	Blaschke products and convex curves	382
	11.6	Blaschke products and convex polygons	392
	11.7	The mapping problem for Jordan polygons	402
	11.8	Sudbery's theorem on zeros of successive derivatives	407
	11.9	Extensions of Sudbery's theorem	413
	References		416
	Index		421