Dynamics of the Atmosphere

A Course in Theoretical Meteorology

Wilford Zdunkowski and Andreas Bott

	Prefac	re	page xv
Part 1 Mathematical tools			1
M1	Algebra of vectors		3
	M1.1	Basic concepts and definitions	3
	M1.2	Reference frames	6
	M1.3	Vector multiplication	7
	M1.4	Reciprocal coordinate systems	15
	M1.5	Vector representations	19
	M1.6	Products of vectors in general coordinate systems	22
	M1.7	Problems	23
M2	Vector	functions	25
	M2.1	Basic definitions and operations	25
	M2.2	Special dyadics	28
	M2.3	Principal-axis transformation of symmetric tensors	32
	M2.4	Invariants of a dyadic	34
	M2.5	Tensor algebra	40
	M2.6	Problems	42
M3	Differ	ential relations	43
	M3.1	Differentiation of extensive functions	43
	M3.2	The Hamilton operator in generalized coordinate	
		systems	48
	M3.3	The spatial derivative of the basis vectors	51
	M3.4	Differential invariants in generalized coordinate systems	53
	M3.5	• •	56
	M3.6	Problems	60
M4	Coord	linate transformations	62
	M4.1	Transformation relations of time-independent	
		coordinate systems	62

	M4.2	Transformation relations of time-dependent	
		coordinate systems	67
	M4.3	Problems	73
M5	The m	nethod of covariant differentiation	75
	M5.1	Spatial differentiation of vectors and dyadics	75
	M5.2	Time differentiation of vectors and dyadics	79
	M5.3	The local dyadic of v_P	82
	M5.4	Problems	83
M6	Integra	al operations	84
	M6.1	Curves, surfaces, and volumes in the general q^i system	84
	M6.2	Line integrals, surface integrals, and volume integrals	87
	M6.3	Integral theorems	90
	M6.4	Fluid lines, surfaces, and volumes	94
	M6.5	Time differentiation of fluid integrals	96
	M6.6	The general form of the budget equation	101
	M6.7	Gauss' theorem and the Dirac delta function	104
	M6.8	Solution of Poisson's differential equation	106
	M6.9	Appendix: Remarks on Euclidian and Riemannian	
		spaces	107
	M6.10) Problems	110
M7		uction to the concepts of nonlinear dynamics	111
	M7.1	One-dimensional flow	111
		Two-dimensional flow	116
Part 2	-	mics of the atmosphere	131
1	The la	ws of atmospheric motion	133
	1.1	The equation of absolute motion	133
	1.2	The energy budget in the absolute reference system	136
	1.3	The geographical coordinate system	137
	1.4	The equation of relative motion	146
	1.5	The energy budget of the general relative system	147
	1.6	The decomposition of the equation of motion	150
_	1.7	Problems	154
2		analysis	157
	2.1	An outline of the method	157
	2.2	Practical formulation of the dimensionless flow	
	2.5	numbers	159
	2.3	Scale analysis of large-scale frictionless motion	161
	2.4	The geostrophic wind and the Euler wind	167
	2.5	The equation of motion on a tangential plane	169
	2.6	Problems	169

3	The r	naterial and the local description of flow	171
	3.1	The description of Lagrange	171
	3.2	Lagrange's version of the continuity equation	173
	3.3	An example of the use of Lagrangian coordinates	175
	3.4	The local description of Euler	182
	3.5	Transformation from the Eulerian to the Lagrangian	
		system	186
	3.6	Problems	187
4	Atmo	ospheric flow fields	189
	4.1	The velocity dyadic	189
	4.2	The deformation of the continuum	193
	4.3	Individual changes with time of geometric fluid	
		configurations	199
	4.4	Problems	205
5	The l	Navier–Stokes stress tensor	206
	5.1	The general stress tensor	206
	5.2	Equilibrium conditions in the stress field	208
	5.3	Symmetry of the stress tensor	209
	5.4	The frictional stress tensor and the deformation	
		dyadic	210
	5.5	Problems	212
6	The l	Helmholtz theorem	214
	6.1	The three-dimensional Helmholtz theorem	214
	6.2	The two-dimensional Helmholtz theorem	216
	6.3	Problems	217
7	Kine	matics of two-dimensional flow	218
	7.1	Atmospheric flow fields	218
	7.2	Two-dimensional streamlines and normals	222
	7.3	Streamlines in a drifting coordinate system	225
	7.4	Problems	228
8	Natu	ral coordinates	230
	8.1	Introduction	230
	8.2	Differential definitions of the coordinate lines	232
	8.3	Metric relationships	235
	8.4	Blaton's equation	236
	8.5	Individual and local time derivatives of the velocity	238
	8.6	Differential invariants	239
	8.7	The equation of motion for frictionless horizontal flow	242
	8.8	The gradient wind relation	243
	8.9	Problems	244

9	Boun	dary surfaces and boundary conditions	246
	9.1	Introduction	246
	9.2	Differential operations at discontinuity surfaces	247
	9.3	Particle invariance at boundary surfaces, displacement	
		velocities	251
	9.4	The kinematic boundary-surface condition	253
	9.5	The dynamic boundary-surface condition	258
	9.6	The zeroth-order discontinuity surface	259
	9.7	An example of a first-order discontinuity surface	265
	9.8	Problems	267
10	Circu	lation and vorticity theorems	268
	10.1	Ertel's form of the continuity equation	268
	10.2	The baroclinic Weber transformation	271
	10.3	The baroclinic Ertel–Rossby invariant	275
	10.4	Circulation and vorticity theorems for frictionless	
		baroclinic flow	276
	10.5	Circulation and vorticity theorems for frictionless	
		barotropic flow	293
	10.6	Problems	301
11	Turbu	lent systems	302
	11.1	Simple averages and fluctuations	302
	11.2	Weighted averages and fluctuations	304
	11.3	Averaging the individual time derivative and the	
		budget operator	306
	11.4	Integral means	307
	11.5	Budget equations of the turbulent system	310
	11.6	The energy budget of the turbulent system	313
	11.7	Diagnostic and prognostic equations of turbulent	
		systems	315
	11.8	Production of entropy in the microturbulent system	319
	11.9	Problems	324
12		cursion into spectral turbulence theory	326
	12.1	Fourier Representation of the continuity equation and	
		the equation of motion	326
	12.2	The budget equation for the amplitude of the	
		kinetic energy	331
	12.3	Isotropic conditions, the transition to the continuous	
		wavenumber space	333
	12.4	The Heisenberg spectrum	336
	12.5	Relations for the Heisenberg exchange coefficient	340
	12.6	A prognostic equation for the exchange coefficient	341

			246
	12.7	Concluding remarks on closure procedures	346
	12.8	Problems	348
13		mospheric boundary layer	349
	13.1	Introduction	349
	13.2	Prandti-layer theory	350
	13.3	The Monin-Obukhov similarity theory of the neutral	* ~ ^
		Prandtl layer	358
	13.4	The Monin-Obukhov similarity theory of the diabatic	
		Prandtl layer	362
	13.5	Application of the Prandtl-layer theory in numerical	
		prognostic models	369
	13.6	The fluxes, the dissipation of energy, and the exchange	
		coefficients	371
	13.7	The interface condition at the earth's surface	372
	13.8	The Ekman layer – the classical approach	375
	13.9	The composite Ekman layer	381
	13.10	Ekman pumping	388
	13.11	Appendix A: Dimensional analysis	391
	13.12	Appendix B: The mixing length	394
	13.13	Problems	396
14	Wave	motion in the atmosphere	398
	14.1	The representation of waves	398
	14.2	The group velocity	401
	14.3	Perturbation theory	403
	14.4	Pure sound waves	407
	14.5	Sound waves and gravity waves	410
	14.6	Lamb waves	418
	14.7	Lee waves	418
	14.8	Propagation of energy	418
	14.9	External gravity waves	422
	14.10	Internal gravity waves	426
	14.11	Nonlinear waves in the atmosphere	431
	14.12	Problems	434
15	The ba	arotropic model	435
	15.1	The basic assumptions of the barotropic model	435
	15.2	The unfiltered barotropic prediction model	437
	15.3	The filtered barotropic model	450
	15.4	Barotropic instability	452
	15.5	The mechanism of barotropic development	463
	15.6	Appendix	468
	15.7	Problems	470

 16 Rossby waves 16.1 One- and two-dimensional Rossby waves 16.2 Three-dimensional Rossby waves 	471 471 476
10.4 Infec-undensional Kosspy Waves	770
16.3 Normal-mode considerations	479
16.4 Energy transport by Rossby waves	482
16.5 The influence of friction on the stationary Rossby wave	483
16.6 Barotropic equatorial waves	484
16.7 The principle of geostrophic adjustment	487
16.8 Appendix	493
16.9 Problems	494
17 Inertial and dynamic stability	495
17.1 Inertial motion in a horizontally homogeneous	.,,
pressure field	495
17.2 Inertial motion in a homogeneous geostrophic wind field	497
17.3 Inertial motion in a geostrophic shear wind field	498
17.4 Derivation of the stability criteria in the geostrophic	.,,
wind field	501
17.5 Sectorial stability and instability	504
17.6 Sectorial stability for normal atmospheric conditions	509
17.7 Sectorial stability and instability with permanent	+ 33
adaptation	510
17.8 Problems	512
18 The equation of motion in general coordinate systems	513
18.1 Introduction	513
18.2 The covariant equation of motion in general coordinate	
systems	514
18.3 The contravariant equation of motion in general	
coordinate systems	518
18.4 The equation of motion in orthogonal coordinate systems	520
18.5 Lagrange's equation of motion	523
18.6 Hamilton's equation of motion	527
18.7 Appendix	530
18.8 Problems	531
19 The geographical coordinate system	532
19.1 The equation of motion	532
19.2 Application of Lagrange's equation of motion	536
19.3 The first metric simplification	538
19.4 The coordinate simplification	539
19.5 The continuity equation	540
19.6 Problems	541

20	The ste	ereographic coordinate system	542	
	20.1	- -		
	20.2	Metric forms in stereographic coordinates	542 546	
	20.3	The absolute kinetic energy in stereographic coordinates	549	
	20.4	The equation of motion in the stereographic		
	20.1	Cartesian coordinates	550	
	20.5	The equation of motion in stereographic	000	
	20.5	cylindrical coordinates	554	
	20.6	The continuity equation	556	
	20.7	The equation of motion on the tangential plane	558	
	20.7	The equation of motion in Lagrangian enumereation	550	
	20.0	coordinates	559	
	20.9	Problems	564	
21		aphy-following coordinate systems	565	
21	21.1	The metric of the η system	565	
	21.2	The equation of motion in the η system	568	
	21.3	The continuity equation in the η system	571	
	21.4	Problems	571	
22		ereographic system with a generalized vertical coordinate	572	
22	22.1	The ξ transformation and resulting equations	573	
	22.1	The pressure system	577	
	22.3	The solution scheme using the pressure system	579	
	22.4	The solution to a simplified prediction problem	582	
	22.5	The solution scheme with a normalized pressure	302	
	22.3	coordinate	584	
	22.6	The solution scheme with potential temperature as	50,	
	22.0	vertical coordinate	587	
	22.7	Problems	589	
23		si-geostrophic baroclinic model	591	
23	23.1	Introduction	591	
	23.2	The first law of thermodynamics in various forms	592	
	23.4	The vorticity and the divergence equation	593	
	23.5	The first and second filter conditions	595	
	23.6	The geostrophic approximation of the heat equation	597	
	23.7	The geostrophic approximation of the vorticity equation	603	
	23.8	The ω equation	605	
	23.9	The Philipps approximation of the ageostrophic		
	23.7	component of the horizontal wind	609	
	23.10	Applications of the Philipps wind	614	
	23.11	Problems	617	
	2 3,11			

24	A tw	o-level prognostic model, baroclinic instability	619
	24.1	Introduction	619
	24.2	The mathematical development of the two-level model	619
	24.3	The Phillips quasi-geostrophic two-level circulation model	623
	24.4	Baroclinic instability	624
	24.5	Problems	633
25	An e	scursion concerning numerical procedures	634
	25.1	Numerical stability of the one-dimensional	00,
		advection equation	634
	25.2	Application of forward-in-time and central-in-space	
		difference quotients	640
	25.3	A practical method for the elimination of the weak	
		instability	642
	25.4	The implicit method	642
	25.5	The aliasing error and nonlinear instability	645
	25.6	Problems	648
26	Mode	ling of atmospheric flow by spectral techniques	649
	26.1	Introduction	649
	26.2	The basic equations	650
	26.3	Horizontal discretization	655
	26.4	Problems	667
27	Predictability		669
	27.1	Derivation and discussion of the Lorenz equations	669
	27.2	The effect of uncertainties in the initial conditions	681
	27.3	Limitations of deterministic predictability of the	
		atmosphere	683
	27.4	Basic equations of the approximate stochastic	
		dynamic method	689
	27.5	Problems	692
	Answers to Problems		693
	List of frequently used symbols		702
	References and bibliography		706