Edited by Michael R. Buchmeiser

WILEY-VCH

Polymeric Materials in Organic Synthesis and Catalysis

Contents

Foreword VII

Preface XIX

List of Contributors XXI

1	Structure, Morphology, Physical Formats and Characterization of Polym	er
	Supports 1	
	Yolanda de Miguel, Thomas Rohr and David C. Sherrington	
1.1	Synthesis and Molecular Structure of Polymer Supports 1	
1.2	Suspension Polymerized Particulate Resin Supports –	
	Structural and Morphological Variants 2	
1.2.1	Suspension Polymerization 2	
1.2.2	Resin Morphology 3	
1.2.3	Novel Morphologies 7	
1.2.3.1	Solvent Expanded Gel-type Resins 7	
1.2.3.2	Collapsible Macroporous Resins 8	
1.2.3.3	Davankov Hypercross-linked Resins 8	
1.2.4	Resins with Branched Molecular Architecture 9	
1.3	Polymer Supports in Film and Monolithic Format 11	
1.3.1	Thin Film Supports 11	
1.3.2	Self-supporting Rods, Discs and Plugs 12	
1.3.3	PolyHIPE-based Supports 13	
1.3.4	Supported Monolithic Structures 15	
1.4	Morphological Characterization of Polymer Supports 15	
1.4.1	Solvent Imbibition 16	
1.4.2	N ₂ Sorption Porosimetry Involving Dry Supports 18	
1.4.2.1	Adsorption/Desorption Mechanisms Isotherm Hysteresis Loops	20
1.4.2.2	Models for Calculation of Surface Area and Pore Sizes 20	
1.4.2.3	Network and Pore Connectivity Effects 23	
1.4.3	Hg Intrusion Porosimetry Involving Dry Supports 24	
1.4.3.1	Theory 24	
1 4 3 2	Comparison between Nitrogen Sorption and Mercury Intrusion	27

х	Contents	
-	1.4.4	Inverse Size Exclusion Chromatographic (ISEC) Analysis of Solvent Wetted Polymer Supports 29
	1.4.5	Other Methods for Characterizing Porous Polymer Morphology 30
	1.5	Analytical Techniques for Monitoring Polymer-supported
		Chemistry 31
	1.5.1	Off-bead Analysis 32
	1.5.1.1	Cleave-and-Characterize 32
	1.5.1.2	Mass Spectrometry 33
	1.5.1.3	Analytical Constructs 33
	1.5.2	Destructive On-bead Analysis 34
	1.5.2.1	Elemental Microanalysis 34
	1.5.2.2	Color tests 34
	1.5.3	Nondestructive On-bead Analysis 35
	1.5.3.1	Mass Balance 35
	1.5.3.2	Other Nondestructive Quantitation Methods 35
	1.5.3.3	Infrared and Raman Spectroscopy 35
	1.5.3.4	Nuclear Magnetic Resonance (NMR) Spectroscopy 41
	1.5.4	Spatial Analysis of Resins 44
	1.6	Challenges for the Future 46
	1.7	References 46
	2	Supported Reagents and Scavengers in Multi-Step Organic Synthesis 53
	•	Ian R. Baxendale, R. Ian Storer and Steven V. Ley
	2.1	Introduction 53
	2.1.1	Solid-supported Synthesis and Solution - Solution Manipulation 53
	2.1.2	Solid-supported Reagents and Catalysts 54
	2.1.2.1	Supporting Materials 55
	2.1.2.2	Facilitation of Work-up and Purification 56
	2.1.2.3	Immobilization of Toxic and Malodorous Reagents 57
	2.1.2.4	Microwaves as a Reliable Heating Method for Polymers 58
	2.1.2.5	Effects of Site Isolation 59
	2.1.2.6	Mutually Incompatible Reagents in the Same Reaction
		Compartment 60
	2.1.3	Solid-supported Purification Processes 61
	2.1.3.1	Supported Scavengers 61
	2.1.3.2	Catch and Release 62
	2.2	Multi-step Organic Transformations 63
	2.2.1	The Early Developments of Polymer-supported Processes
		in Organic Synthesis 63
	2.2.1.1	One Pot Multi-reagent Combinations 63
	2.2.1.2	Sequential Multi-step Transformations 69
	2.2.2	The Further Development of Scavenging Protocols 72
	2.2.3	Immobilized Reagents and Scavenging Techniques
		in Library Synthesis 76

2.2.3.1	Incorporation of Solid-supported Scavengers
	into Library Synthesis 76
2.2.3.2	The Application of Immobilized Reagents and Scavengers to Library
	Synthesis 89
2.2.4	Natural Product Synthesis 116
2.3	Conclusion 131
2.4	References 132
3	Organic Synthesis on Polymeric Supports 137
	Carmen Gil, Kerstin Knepper and Stefan Bräse
3.1	Introduction 137
3.2	Linkers for Organic Synthesis on Polymeric Supports 138
3.2.1	Linker Families 139
3.2.1.1	Benzyl-Type Linkers including Trityl and Benzhydryl Linkers 139
3.2.1.2	Allyl-Based Linkers 141
3.2.1.3	Ketal/Acetal-Based Linkers 141
3.2.1.4	Ester-, Amide- and Carbamate-Based Linkers 143
3.2.1.5	Silyl Linkers 144
3.2.1.6	Boronate Linkers 144
3.2.1.7	Sulfur-, Stannane- and Selenium-Based Linkers 144
3.2.1.8	Triazene-Based Linkers 149
3.2.1.9	Photocleavable Linkers 151
3.2.2	Linker Strategies 152
3.2.2.1	Safety Catch Linkers 152
3.2.2.2	Cyclative Cleavage (Cyclorelease Strategy) 155
3.2.2.3	Cleavage-Cyclization Cases 156
3.2.2.4	Fragmentation Strategies 156
3.2.2.5	Traceless Linkers 157
3.2.2.6	Multifunctional Cleavage 157
3.2.2.7	Linkers for Asymmetric Synthesis 159
3.2.3	Linkers for Functional Groups 162
3.3	Organic Transformations on Polymeric Supports 164
3.3.1	Oxidation and Reduction Reactions 164
3.3.2	C-C Bond Formation Reactions 165
3.3.2.1	Palladium-Catalyzed Reactions 166
3.3.2.2	Grignard and Similar Reactions 168
3.3.2.3	Michael Reactions and 1,2-Addition Reactions 168
3.3.2.4	Wittig and Horner – Wadsworth – Emmons Reactions 169
3.3.2.5	Alkene Metathesis 169
3.3.3	Cycloaddition Reactions 170
3.3.3.1	Diels-Alder Reactions 170
3.3.3.2	1,3-Dipolar Cycloaddition Reactions 171
3.3.4	Organometallic Chemistry on Polymeric Supports 171
3.3.5	Multicomponent Reactions 172
3.3.5.1	Grieco Reactions 172

XII	Contents	
•	3.3.5.2	Ugi Reactions 172
	3.3.6	Mannich Reactions 173
	3.3.6.1	Hantzsch Reactions 173
	3.3.6.2	Biginelli Reactions 173
	3.4	Targets for Synthesis on Polymeric Supports 174
	3.4.1	Natural Products 174
	3.4.1.1	Solid-phase Target-Oriented Total Synthesis of Natural Products 175
	3.4.1.2	Combinatorial Derivatization for Immobilized Natural Product
	,	Skeletons and Combinatorial Semi-synthesis 176
	3.4.1.3	Construction of Natural Product-Like Libraries 176
	3.4.2	Adaptation of New Synthetic Methods for the Solid-phase Synthesis of Combinatorial Libraries 178
	3.4.2.1	Heterocycles 178
	3.5	Conclusion, Summary and Outlook 187
	3.6	List of Abbreviations 187
	3.7	References 189
	4	Solid-Phase Bound Catalysts: Properties and Applications 201
		Thomas Frenzel, Wladimir Solodenko and Andreas Kirschning
	4.1	Introduction 201
	4.2	The Solid Support 203
	4.2.1	Polymer Supports 203
	4.2.2	Inorganic Supports 207
	4.2.3	Selected Examples for Attachment of Ligands to Solid Supports 208
	4.3	Applications in Catalysis 211
	4.3.1	Polymer Supported Oxidations 211
	4.3.1.1	Oxidation of Alcohols 212
	4.3.1.2	Epoxidation of Alkenes 213
	4.3.1.3	Dihydroxylation and Aminohydroxylation of Alkenes 216
	4.3.2	Lewis Acid-mediated Reactions 219
	4.3.2.1	Addition Reactions to Carbonyl Compounds 219
	4.3.2.2	Addition Reactions to Imines 221
	4.3.2.3	Addition Reactions to Carbon–Carbon Double Bonds 222
	4.3.2.4	Cycloaddition Reactions 223
	4.3.2.5	Miscellaneous Applications 225
	4.3.3	Transition Metal Catalysts 226
	4.3.3.1	Palladium-catalyzed Coupling Reactions 227
	4.3.3.2	Olefin Metathesis 229
	4.3.3.3	Transition Metal-catalyzed Hydrogenation and Hydroformylation 229
	4.3.4	Miscellaneous 232
	4.4	Outlook 234
	4.5	Acknowledgments 234
	4.6	References 234

5	Soluble Polymers as Catalyst and Reagent Platforms:
	Liquid-Phase Methodologies 241
F 1	Tobin J. Dickerson, Neal N. Reed and Kim D. Janda
5.1	Introduction 241 Overview of Soluble Polymers in Organic Synthesis 242
5.2	
5.2.1	Properties of Soluble Polymeric Supports 242
5.2.2	Methods for Separating Polymers from Reaction Mixtures 243
5,2.3	Analytical Methods in Liquid-phase Synthesis 244
5.2.4	Listing of Polymers 245
5.2.4.1	Polyethylene Glycol (PEG) 245
5.2.4.2	Non-cross-linked Polystyrene 247
5.3	PEG-supported Catalysts 248
5.3.1	Hydrogenation Catalysts 248
5.3.2	Chinchona Alkaloid Ligands for the Sharpless AD Reaction 249
5.3.3	Phase-transfer Catalysts 251
5.3.4	Epoxidation Catalysts 253
5.3.5	Carbon – Carbon Bond-forming Catalysts 253
5.4	Soluble Polymer-supported Reagents 256
5.4.1	Phosphine Reagents 256
5.4.2	Oxidants 261
5.4.3	Reducing Agents 263
5.4.4	Microgel-supported Reagents 265
5.4.5	Miscellaneous Reagents 266
5.5	Conclusions 272
5.6	Acknowledgements 272
5.7	References 273
6	Polymers for Micellar Catalysis 277
	Oskar Nuyken, Ralf Weberskirch, Thomas Kotre, Daniel Schönfelder
	and Alexander Wörndle
6.1	Introduction 277
6.2	Amphiphilic Block Copolymers for Micelle Formation 281
6.2.1	Transition Metal Catalysts Solubilized in Micellar Aggregates 281
6.2.2	Metal Colloids Stabilized in Micellar Aggregates 283
6.2.3	Catalysts Covalently Bound to the Amphiphilic Block Copolymer 280
6.2.3.1	Phosphine-Functionalized Amphiphiles for Rhodium-Catalyzed
	Hydrogenation 286
6.2.3.2	Triphenylphosphine-Functionalized Amphiphiles for
	Rhodium-Catalyzed Hydroformylation and Palladium-Catalyzed
	Heck Coupling Reaction 287
6.2.3.3	ATRP of Methyl Methacrylate in the Presence of an Amphiphilic,
	Polymeric Macroligand 291
6.3	Amphiphilic Polymers Forming Micelle Analogous Structures 294
6.3.1	Amphiphilic Star Polymers with a Hyperbranched Core 295
632	Polysoans 298

VIX	Contents	
•	6.4	Summary and Outlook 301
	6.5	References 302
	7	Dendritic Polymers as High-Loading Supports for Organic Synthesis and Catalysis 305 Rainer Haag and Sebastian Roller
	7.1	Introduction 305
	7.2	General Aspects of Dendritic Polymers and Solid-phase Hybrid
	,	Polymers 305
	7.2.1	Special Properties of Soluble Dendritic Polymeric Supports 307
	7.2.2	Methods for Separating Dendritic Polymer Supports from Reaction Mixtures 307
	7.2.3	Dendritic Hybrid Polymers as High-Loading Solid-phase Supports 310
	7.3	Dendritic Polymer-supported Organic Synthesis 312
	7.3.1	Perfect Dendrimers as Supports in Organic Synthesis 312
	7.3.2	Hyperbranched Polymeric Supports in Organic Synthesis 316
	7.3.3	Other Soluble Multivalent Supports in Organic Synthesis 319
	7.3.4	Dendronized Solid-phase Supports for Organic Synthesis 322
	7.4	Dendritic Polymer-supported Reagents and Scavengers 328
	7.5	Dendritic Polymers as High-Loading Supports for Catalysts 331
	7.5.1	Dendritic Polymeric Supports in Homogeneous Catalysis 331
	7.5.1.1	Selected Examples for Dendritic Polymer-supported Catalysis 332
	7.5.2	Dendritic Polymeric Supports in Heterogeneous Catalysis 338
-	7.6	Conclusions 339
	7.7	Acknowledgements 340
	7.8	Abbreviations 341
	7.9	References 342
	8	Metathesis-Based Polymers for Organic Synthesis and Catalysis 345 Michael R. Buchmeiser
	8.1	Introduction 345
	8.2	Polymeric Catalytic Supports Prepared by ROMP 345
	8.2.1	Precipitation Polymerization-based Techniques 345
	8.2.2	Grafting Techniques 347
	8.2.2.1	Grafted Supports for Heck Reactions 347
	8.2.2.2	Grafted Supports for ATRP 349
	8.2.2.3	Grafted Supports for Ring-closing Metathesis (RCM) and Related Reactions 350
	8.2.2.4	Other Grafted Supports 351
	8.2.3	Coating Techniques 351
	8.2.3.1	Heck Supports Based on Coated Silica 351
	8.2.3.2	ATRP Supports Based on Coated Silica 353
	8.2.3.3	RCM Supports Based on Coated Silica 353
	8.3	ROMPgels and Other Functional Metathesis-based Polymers 354
	8.4	Monolithic Catalytic Supports 358

8.4.1	Basics and Concepts 358
8.4.2	Manufacture of Metathesis-based Monolithic Supports 359
8.4.3	Microstructure of Metathesis-based Rigid Rods 360
8.4.4	Functionalization, Metal Removal and Metal Content 361
8.4.5	Applications of Functionalized Metathesis-based Monoliths
	in Catalysis 364
8.4.5.1	Grafted Supports for Ring-closing Metathesis (RCM)
	and Related Reactions 364
8.4.5.2	Poly-(N,N-dipyrid-2-yl-7-oxanorborn-2-en-5-ylcarbamido · PdCl ₂)-grafted
	Monolithic Supports for Heck Reactions 366
8.4.5.3	Poly-(N,N-dipyrid-2-yl-7-oxanorborn-2-en-5-ylcarbamido · PdCl ₂)-coated
	Monolithic Supports for Heck Reactions 367
8.5	Conclusion, Summary and Outlook 367
8.6	Acknowledgement 368
8.7	References 368
9	New Strategies in the Synthesis of Grafted Supports 371
	R. Jordan
9.1	Introduction and Scope 371
9.2	Self-assembled Monolayers 372
9.2.1	Two Dimensional Self-assembly 372
9.2.2	Self-assembled Monolayers of Alkanethiols 374
9.2.3	Self-assembled Monolayers of Silanes 376
9.2.4	Self-assembled Monolayers for Surface Engineering 378
9.2.5	Surface Reconstruction: A Dynamic View of Self-assembled
	Monolayer Systems 381
9.2.6	Self-assembled Monolayers of Rigid Mercaptobiphenyls 382
9.2.6.1	Self-Assembly of Dipoles 386
9.2.7	Patterned Self-assembled Monolayers 388
9.2.8	Self-assembled Monolayers as Tailored Functional Surfaces in Two
	and Three Dimensions 393
9.3	Polymers on Surfaces 397
9.3.1	Polymer Brushes by Surface-initiated Polymerizations 400
9.3.2	Surface-initiated Polymerization Using Free Radical
	Polymerization 406
9.3.3	Surface-initiated Polymerization Using Living Ionic Polymerization 413
9.3.3.1	Surface-initiated Polymerization Using Living Anionic
	Polymerization 414
9.3.3.2	Surface-initiated Polymerization Using Living Carbocationic
	Polymerization (LCSIP) 417
9.3.4	Surface-initiated Polymerization Using Controlled Radical
	Polymerization 423
9.3.5	Surface-initiated Polymerization by Miscellaneous Techniques 430
9.4	Summary and Outlook 433
9.5	References 434

IVX	Contents	
•	10	Biocatalyzed Reactions on Polymeric Supports: Enzyme-Labile Linker Groups 445
		Reinhard Reents, Duraiswamy Jeyaraj and Herbert Waldmann
	10.1	Introduction 445
	10.2	Endo-linkers 446
	10.3	Exo-linkers 458
	10.4	References 465
	11	Polymer-Supported Olefin Metathesis Catalysts for Organic
		and Combinatorial Synthesis 467
		Jason S. Kingsbury and Amir H. Hoveyda
	11.1	Introduction 467
	11.2	The First Polymer-supported Ru Catalyst for Olefin Metathesis 468
	11.3	Homogeneous Catalysis through Heterogeneous Ru Carbenes 469
	11.3.1	Recyclable Monomers Act through a 'Release/Return' Mechanism 469
	11.3.2	The First Carbene-tethered Polymeric Catalyst 470
	11.3.3	A Poly(ethylene glycol)-based Catalyst with Solvent-dependent Solubility 472
	11.4	Dendrimers as Recyclable Metathesis Catalysts 475
	11.4.1	Synthesis and Metathesis Activity of Ru-based Carbosilane
		Dendrimers 475
	11.4.2	Evidence for Ru Release and Return During Olefin Metathesis 477
	11.4.3	Dendrimer Microfiltration: A New but Underdeveloped Strategy for Catalyst Recovery 479
	11.5	A Recent Approach to Permanent Immobilization of a Ru-based
		Catalyst 480
	11.6	A PS-supported Ru Catalyst with Unsaturated N-Heterocyclic Carbene Ligation 482
	11.7	A New Recyclable Catalyst Based on the Bidentate Styrene Ether 484
	11.8	Alternative Solid Supports Expand the Scope of Existing Catalyst Systems 486
	11.8.1	A Comparative Study of Three Poly-DVB-supported Ru Carbenes 486
	11.8.2	A Wang-supported Styrene Ether Catalyst for Stereoselective Cross Metathesis 487
	11.9	Facilia Dan et 11 D. Guldar G. G. dan et al.
	11.10	The First Supported Chiral Metathesis Catalyst 493
	11.11	Conclusions and Future Outlook 499
	11.12	References 499

12	Monitoring and Optimizing Organic Reactions Carried Out
	on Solid Support 503 Bing Yan
13.1	Introduction 503
12.1	
12.1.1	Quality of Combinatorial Libraries 503
12.1.2	Purification and the Chemical Yield of Synthesis 504
12.1.3	Methods for Monitoring the Reaction Completion 505
12.2	Non-chemical Factors Affecting the Completion of Solid-phase Reactions 507
12.2.1	Esterification Reaction Using Resin Beads of Various Sizes 507
12.2.2	Bromination Reaction on Resin Beads of Various Sizes 510
12.3	Monitoring the Reaction Completion 510
12.3.1	Reaction Completion Monitored by Single Bead FTIR 510
12.3.2	Reaction Completion Monitored by Combination of Methods 511
12.3.3	Pitfalls to Avoid in Reaction Monitoring 511
12.4	Monitoring the Cleavage Completion 516
12.4.1	Cleavage from Acid-labile Linker 516
12,4.1.1	TFA Cleavage of Resin-Bound Products 517
12.4.1.2	Comparison of TFA Cleavage Reactions 518
12.4.2	Cleavage from Marshall Linker 520
12.4.2.1	Cleavage of Resin-Bound Thiophenol Esters with n-Butylamine 520
12.4.2.2	Cleavage with 3,4-Dimethoxyphenethylamine 523
12.4.2.3	Cleavage with 1-Piperonylpiperazine 524
12.4.2.4	Effect of Temperature on Cleavage Reaction 524
12,4.2.5	Cleavage Rate after Linker Oxidation 524
12.5	Concluding Remarks 524
12.6	Acknowledgements 525
12.7	References 526
13	Polymeric Membranes for Integrated Reaction and Separation 527
	J.T.F. Keurentjes
13.1	Introduction 527
13.2	Membrane Systems for Improved Chemical Synthesis 528
13.2.1	Efficient Catalyst Recycle 528
13.2.2	Pervaporation Membranes for Shifting Chemical Equilibrium 530
13.3	Membrane Bioreactors 536
13.3.1	Lactic Acid Production 537
13.3.2	Bioreactors for Environmental Applications 538
13.3.3	Enzyme Reactors 540
13.4	Concluding Remarks 544
13.5	References 545