INTERNATIONAL EpiTioN

THE 80x86 IBM PC AND
CompATIBLE COMPUTERS
(Vorumes | & 1)

ASSEMBLY LANGUAGE,

DESIGN, AND INTERFACING
4th Edition

-

ors® "“f"

-y

Muhammad Ali Mazidi
Janice Gillispie Mazidi

CONTENTS

PREFACE TO VOLUMES I AND II

CHAPTER 0: INTRODUCTION TO COMPUTING 1

SECTION 0.1: NUMBERING AND CODING SYSTEMS
Decimal and binary number systems 2
Converting from decimal to binary 2
Converting from binary to decimal 2
Hexadecimal system 3.

Converting between binary and hex 4
Converting from decimal to hex 4
Converting from hex to decimal 4
Counting in base 10, 2, and 16 6

Addition of binary and hex numbers 6
2'scomplement 6

Addition and subtraction of hex numbers 7
Addition of hex numbers 7

Subtraction of hex numbers =~ 7

ASCII code 8

SECTION 0.2: INSIDE THE COMPUTER 9
Some important terminology 9
Internal organization of computers 9
More about the data bus 10
More about the address bus 10
CPU and its relation to RAM and ROM 11
Inside CPUs 11
Internal working of computers 12

SECTION 0.3: BRIEF HISTORY OF THE CPU 13
CISCvs. RISC : |4

CHAPTER 1: THE 80x86 MICROPROCESSOR 18

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY
Evolution from 8080/8085 to 8086 19
Evotution from 8086 to 80$8 19
Success of the 8088 19
Other microprocessors: the 80286, 80386, and 80486

SECTION 1.2: INSIDE THE 8088/8086 21
Pipelining 21
Registers 22

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING
Assembly language programming 24
MOV instruction 24
ADD instruction 25

SECTION 1.4;: INTRODUCTION TO PROGRAM SEGMENTS 26
Origin and definition of the segment 27
Logical address and physical address 27
Code segment 27
Logical address vs. physical address in the code segment 28
Data segment 29
Logical address and physical address in the data segment
Little endian converition 31
Extra segment (ES) 32
Memory map of the IBM PC 32
More about RAM 32
Video RAM 33
More about ROM 33
Function of BIOS ROM 33

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 33
What is a stack, and why is it needed? 33
How stacks are accessed 34
Pushing onto the stack 34
Popping the stack 34
Logical address vs. physical address for the stack 35
A few more words about segments in the 80x86 36
Overlapping 36
Flag register 37
Bits of the flag register 38
Flag register and ADD instruction 38
Use of the zero flag for looping 40

SECTION 1.6: 80x86 ADDRESSING MODES 41
Register addressing mode 4]

Immediate addressing mode 4] S
Direct addressing mode 42

Register indirect addressing mode 42
Based relative addressing mode 43
indexed relative addressing mode 43

Based indexed addressing mode 44
Segment overrides 44

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM
Segments of a program 50
Stack segment definition 51
Data segment definition 51
Code segment definition 52

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
.asm and .obj files 55
st file 55
PAGE and TITLE directives 56
.crf file 56
LINKing the program 57
.mayp file 57

SECTION 2.3: MORE SAMPLE PROGRAMS 57
Analysis of Program 2-1 58 :
Various approaches to Program 2-1 60
Analysis of Program 2-2 62
Analysis of Program 2-3 62
Stack segment definition revisited 62

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS 64
FAR and NEAR 64
Conditional jumps 64
Short jumps 64 ‘
Unconditional jumps 66
CALL statements 66
Assembly language subroutines 67
Rules for names in Assembly language 67

SECTION 2.5: DATA TYPES AND DATA DEFINITION 69
80x86 data types 69
Assembler data directives 69
ORG (origin) 69
DB (define byte) 69
DUP (duplicate) 70
DW (define word) 70
EQU (equate) 71 N
DD (define doubleword) 71
DQ (define quadword) 72
DT (define ten bytes) 72

SECTION 2.6: SIMPLIFIED SEGMENT DEFINITION 73
Memory model 74
Segment definition 74

SECTION 2.7: EXE VS. COM FILES 76
Why COM files? 76
Converting from EXE to COM 77

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS 82

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION 83
Addition of unsigned numbers 83
CABSE 1: Addition of individual byte and word data 83
Analysis of Program 3-1a 84
CASE 2: Addition of multiword numbers 85
Analysis of Program 3-2 86
Subtraction of unsigned numbers 87
SBB (subtract with borrow) 88

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION 88
Multiplication of ensigned numbers 88
Division of unsigned numbers 90

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS 93

AND * = 93
OR 93
XOR 94
SHIFT 95

COMPARE of unsigned numbers 96
IBM BIOS method of converting from lowercase to uppercase 99
BIOS examples of logic instructions 100

SECTION 3.4 BCD AND ASCII OPERANDS AND INSTRUCTIONS 101
BCD number system 101
Unpacked BCD 102
Packed BCD 102
ASCII numbers 102
ASCII to BCD conversion 102
ASCII to unpacked BCD conversion 102
ASCII to packed BCD conversion 103
Packed BCD to ASCII conversion 104
BCD addition and subtraction 104
BCD addition and correction 104
DAA 105
Summary of DAA action 105
BCD subtraction and correction 105
Summary of DAS action 107
ASCII addition and subtraction 109 _
Unpacked BCD multiplication and division 110
AAM 110
AAD 110

N

SECTION 3.5: ROTATE INSTRUCTIONS 111
Rotating the bits of an operand right and left 111
ROR rotate right 111
ROL rotate left 112
RCR rotate right through carry 113
RCL rotate left through carry 113

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 114
Bitwise operators in C 114
Bitwise shift operators inC 115
Packed BCD-to-ASCII conversion inC 116
Testing bitsinC 116

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 121

SECTION 4.1: BIOS INT 10H PROGRAMMING 122
Monitor screen in text mode 122
Clearing the screen using INT 10H function 06H 123
INT 10H function 02: setting the cursor to a specific location 123
- INT 10H function 03; get current cursor position 124
Changing the video mode 124
Attribute byte in monochrome monitors 125
Attribute byte in CGA text mode 125
Graphics: pixel resolution and color 127
INT 10H and pixel programming 128
Drawing horizontal or vertical lines in graphics mode 128
Changing the background color 129

SECTION 4.2: DOS INTERRUPT 21H 130
INT 21H option 09: outputting a string to the monitor 130
INT 21H option 02: outputting a character to the monitor 130
INT 21H option 01: inputting a character, with echo 130
INT 21H option 0AH: inputting a string from the keyboard 131
Inputting more than the buffer size 132
Use of carriage return and line feed 134
INT 21H option 07: keyboard input without echo 135
Using the LABEL directive to define a string buffer 136

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139
Checking a key press 139 \
Which key is pressed? 139

SECTION 4.4: INTERRUPT PROGRAMMING WITHC 141
Programming BIOS interrupts with C/C++ 141
Programming INT 21H DOS functions calls with C/C++ 143
Accessing segment registers 144
Accessing the carry flag in int86 and intdos functions 144
Mixing C with Assembly 'and checking ZF 145
C function kbhit vs. INT 16H keyboard input 146

CHAPTER 5: MACROS AND THE MOUSE 150

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED? 151
MACRO definition 151

Comments in a macro 152
Analysis of Program 5-1 154
LOCAL directive and its use in macros 155

INCLUDE directive 158

SECTION 5.2: MOUSE PROGRAMMING WITH INT 33H 161
INT 33H 161
Detecting the presence of a mouse 161
Some mouse terminofogy 162
Displaying and hiding the mouse cursor 162
Video resolution vs. mouse resolution in text mode 163
Video resolution vs. mouse resolution in graphics mode 163
Getting the current mouse cursor position (AX=03) 163
Setting the mouse pointer position (AX=04) 166
Getting mouse button press information (AX=05) 166
Monitoring and displaying the button press count program 167
Getting mouse button release information (AX=06) 168
Setting horizontal boundary for mouse pointer (AX=07) 168
Setting vertical boundary for mouse pointer (AX=08) 168
Setting an exclusion area for the mouse pointer (AX=10) 169
Getting mouse driver information (version) (AX=24H) 169

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES 173

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS 174
Concept of signed numbers in computers 174 -
Signed byte operands 174
Positive numbers 174
Negative numbers 174
Word-sized signed numbers 175
Overflow problem in signed number operations 176
When the overflow flag is set in 8-bit operations 176
Overflow flag in 16-bit operations 177
. Avoiding erroneous results in signed number operations 178
IDIV (Signed number division) 179
IMUL (Signed number muitiplication) 180
Arithmetic shift 182
SAR (shift arithmetic right) 182 _
SAL (shift arithmetic left) and SHL (shift left) 182
Signed number comparison 182

SECTION 6.2: STRING AND TABLE OPERATIONS 184
Use of SI and DI, DS and ES in string instiuctions 185
Byte and word operands in string instructions 185
DF, the direction flag 185
REP prefix 186
STOS and LODS instructions 186
Testing memory using STOSB and LODSB 187
The REPZ and REPNZ prefixes 187
SCAS (scan string) 189 '

Replacing the scanned character . 189
XLAT instruction and look-up tables 190
Code conversion using XLAT 190

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING 193

SECTION 7.1: WRITING AND LINKING MODULES 194
Why modules? 194
Writing modules 194
EXTRN directive 194
PUBLIC directive 194
END directive in modules =~ 195
Litiking modules together into one executable unit 196
SEGMENT directive 198
Complete stack segment definition -~ 198
Complete data and code segment definitions 198
Analysis of Program 7-2 link map 200
Modular programming and the new segment definition 201

SECTION 7.2: SOME VERY USEFUL MODULES 203
Binary (hex)-to-ASCII conversion 203
ASCII (decimal)-to-binary (hex) conversion 204
Binary-to-ASCII module 205
ASCII-to-binary module 207
Calling module 207

SECTION 7.3: PASSING PARAMETERS AMONG MODULES 208
Passing parameters via registers 208
Passing parameters via memory 208
Passing parameters via the stack 208

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C 210
Why C? 210 L
Inserting 80x86 assembly code into C programs 211
C programs that call Assembly procedures 212
C calling convention 213
How parameters are returned to C 214
New assemblers and linking with C 215
Passing array addresses from C to the stack 216
Linking assembly language routines with C 217

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES 220

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 221
General registers are pointers in 386/486 222
386/486 maximum memory range in real mode: 1M 224
Accessing 32-bit registers with commonly used assemblers 224
Little endian revisited 226

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 226
Adding 16-bit words using 32-bit registers 226
Adding multiword data in 386/486 machines 228
Multiplying a 32-bit operand by a 16-bit operand 229
32-bit by 16-bit multiplication using 8086/286 registers 229

SECTION 8.3: 80x86 PERFORMANCE COMPARISON 231
' Running an 8086 program across the 80x86 family 231

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS 235

SECTION 9.1: 8088 MICROPROCESSOR 236
Microprocessor buses 236
Data bus in 8088 236
Address bus in 83088 238

8088 control bus 238
Bus timing of 8088 239
Other 8088 pins 240
SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS 242

8288 bus controller 242
Input signals 242

Output signals 243

8284 clock generator 244
Input pins 244

Output signals 245

SECTION 9.3: 8-BIT SECTION OF ISA BUS 248
A bit of bus history 246

Local bus vs. system bus 247
Address bus 247
Data bus 248

Control bus 249

One bus, two masters 249

AEN signal generation 249
Control of the bus by DMA 250
Bus boosting 250

8-bit section of the ISA bus 250

SECTION 9.4: 80286 MICROPROCESSOR 251
Pin descriptions 252

SECTION 9.5: 16-BIT ISA BUS 255
Exploring ISA bus signals 255
Address bus 256
Data bus 256
Memory and I/O control signals 256
Other control signals 258
ODD and EVEN bytes and BHE 259
A20 gate and the case of high memory area (HMA) 260

CHAPTER 10: MEMORY AND MEMORY INTERFACING 265

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 266
Memory capacity 266
Memory organization 266
Speed 267
ROM (read-only memory) 267
PROM (programmable ROM) or OTP ROM 268
EPROM (erasable programmable ROM) 268
EEPROM (electrically erasable programmable ROM) 269
Flash memory 270 :
Mask ROM 271
RAM (random access memory) 271
SRAM (static RAM) 271
DRAM (dynamic RAM) 273
Packaging issue in DRAM 273
DRAM, SRAM and ROM organizations 275
NV-RAM (nonvolatile RAM) 276

SECTION 10.2: MEMORY ADDRESS DECODING 276
Simple logic gate as address decoder 278
Using the 741.S138 as dQcoder 279

SECTION 10.3: IBM PC MEMORY MAP 280
Conventional memory: 640K of RAM 281
BIOS data area 282
Video display RAM (VDR) map 282
ROM address and cold boot on the PC 283

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 284
Checksum byte 284
Checksum program 286
Use of parity bit in DRAM error detection 286
DRAM memory banks 286
Parity bit generator/checker in the IBM PC 288
748280 parity bit generator and checker 288

SECTION 10.5: 16-BIT MEMORY INTERFACING 289
ODD and EVEN banks 289
Memory cycle time and ihserting wait states 291
Accessing EVEN and ODD words 292
Bus bandwidth 293

SECTION 10.6: [SA BUS MEMORY INTERFACING 295
Address bus signals 295
Memory control signals 295
ISA bus timing for memory 299
8-bit memory timing for ISA bus 299
ROM duplicate and x86 PC memory map 301
Shadow RAM 302
DIMM and SIMM memory modules 302

CHAPTER 11: /O AND THE 8255; ISA BUS INTERFACING 309

SECTION 11.1: 8088 INPUT/OUTPUT INSTRUCTIONS 310
8-bit data ports 310 ‘
How to use I/0 instructions 311

SECTION 10.2: YO ADDRESS DECODING AND DESIGN 312
Using the 74LS373 in an output port design 312
IN port design using the 74LS244 312
Memory map 1/O 314

SECTION 11.3: /O ADDRESS MAP OF X86 PCS 316
Absolute vs. linear select address detoding 316
Prototype addresses 300 - 31FH in the x86 PC 316
Use of simple logic gates as address decoders 316
Use of 74L.S138 as décoder 318
IBM PC /O address decoder 318
Use of the 8255 in the IBM PC/XT 341
Port 61H and tinie delay generation 319

SECTION 11.4: 8255 PPI CHIP 320
Mode selection of the 8255A 321

_SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 325
PC 1/O Bus Extender 325
Buffering 300 - 31F address range 326
Installing the PC Bus Extender and booting the PC 327
Failure to boot 327
PC Interface Trainer 327
Design of the PC Trainer 328
Therole of Hl and H2 328
Connecting the Module Trainer to the PC and testing 328
Testing the 8255 port 329
Testing Port A 330

SECTION 11.6: I/O PROGRAMMING WITH C/C++ AND VB 332

Visual C/C++ 1/0 programming 332
Visual C++ output example 332
Visual C++ input example 332

I/O programming in Turbo C/C++ 334
/0 programming in Linux C/C++ 335
Linux C/C++ program with I/O functions 335

SECTION 11.7: 8-BIT AND 16-BIT I/O TIMING IN ISA BUS 338

8-bit and 16-bit I/O in ISA bus 338

/O signals of the ISA bus 339

8-bit timing and operation in ISA bus 341

16-bit I/O operation and timing in ISA bus 342
16-bit data ports instruction 342

16-bit I/O timing and operation via ISA bus 342
170 bus bandwidth for ISA 343

Interfacing 8-bit peripherals to a 16-bit data bus 344

CHAPTER 12: INTERFACING TO THE PC: LCD, MOTOR, ADC, AND

SENSOR

351

SECTION 12.1: INTERFACING ANLCD TOTHE PC 352

LCD operation 352

LCD pin descriptions 352

Sending commands to LCDs 353

Sending data to the LCD 355

Checking LCD busy flag 356

LCD cursor position 357

LCD programming in Visual C/C++ 358
LCD timing and data sheet 358

SECTION 12.2: INTERFACING A STEPPER MOTOR TOA PC 362

Stepper motors 362

Step angle 363.

Stepper motor connection and programming 364

Steps per second and RPM relation 365

The four-step sequence and number of teeth on rotor 365
Motor speed 366 .

Holding torque 366

Wave drive 4-step sequence 367

SECTION 12.3: INTERFACING DACTO APC . 368

Digital-to-analog (DAC) converter 368

MC1408 DAC (or DAC 808) 369

Converting IOUT to voltage in 1408 DAC 369
Generating a sine wave ' 369

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 373
ADC devices 373
ADC 804 chip 373
Selecting an input channel 376
ADC0848 connection to 8255 377
Interfacing a temperature sensor to a PC 378
LM34 and LM35 temperature sensors 378
Signal conditioning and interfacing the LM35toa PC 379

CHAPTER 13: 8253/54 TIMER AND MUSIC 386

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 387
Initialization of the 8253/54 388
Control word 388

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND
PROGRAMMING 391

Using counter 0 392

~ Using counter 1~ 393

Using counter 2 393

Use of timer 2 by the speaker 394

Turning on the speaker via PB0 and PB1 of port 61H 394

Time delay for 80x86 PCs 394

Creating time delays in 8088/86-based computers 395

Time delays in 80x86 IBM PC for 286 and higher processors 395

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 397
Playing "Happy Birthday" on the PC =~ 399

SECTION 13.4: SHAPE of 8253/54 OUTPUTS 401
OUTO pulse shape in IBM BIOS 401
OUT! puise shape in IBM BIOS 402
OUT?2 puise shape in IBM BIOS 402
8253/54 modes of operation 402
Testing the 8255/54 timer of the PC Interface Trainer 407

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 410
SECTION 14.1: 8088/86 INTERRUPTS 411
Interrupt service routine (ISR) 411
Difference between INT and CALL instructions 412
Categories of interrupts 413
Hardware interrupts 413
Software interrupts 413
Interrupts and the flag register 414
Processing interrupts 414
Functions associated with INT 00 to INT 04 415

SECTION 14.2: IBM PC AND DOS ASSIGNMENT OF INTERRUPTS 417
Examining the interrupt vector table of your PC 417
Analyzing an JBM BIOS interrupt service routine 419
INT 12H: checking the size of RAM on the IBM PC 419

SECTION 143: 8259 PROGRAMMABLE INTERRUPT CONTROLLER 420
8259 control words and ports 421
Masking and prioritization of IR0 - IR7 interrupts 426
OCW (operation command word) 426
OCW1 (operation command word 1) 427
OCW2 (operation command word 2) 427
Importance of the EOI (end of interrupt) command 429
OCW3 (operation command word 3) 429

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PC/XT 430
Interfacing the 8259 to the 8088 in IBM PC/XT computers 430
Initialization words of the 8259 in the IBM PC/XT 431
Sequences of hardware interrupts with the 8259 432
Sources of hardware interrupts in the IBM PC/XT 433
Sources of NMI in the IBM PC 433

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 436
IBM PC AT hardware interrupts 436
8259 in master mode 436
8259 in slave mode 437
AT-type computers interrupt assignment 438
Case of missing IRQs on the AT expansion slot 438
80x86 microprocessor generated interrupts (exceptions) 439
Interrupt priority 441
More about edge- and level-triggered interrupts 441
Interrupt sharing in the x86 PC. 442

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 447
SECTION 15.1: CONCEPT OF DMA 448

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 450
8237's internal control registers 453
Command register 453
Status register 454

Mode register 456 N
Single mask register 457
All mask register 457

Master clear/temporary register 458
Clear mask register 459

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC/XT 459
8237 and 8088 connections in the IBM PC 459
Channel assignment of the 8237 in the IBM PC/XT 463
- DMA page register 463
DMA data transfer rate of the PC/XT 464

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF
THE 8237 465

Refreshing DRAM with the 8237 467

Refreshing in the IBM PC/XT 467

DMA cycle of channel 0 467

SECTION 15.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 468
8237 DMA #1 468
8237 DMA #2 469
Points to be noted regarding 16-bit DMA channels 470
DMA channel priority 471
I/O cycle recovery time 471
DMA transfer rate 472

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 477

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO
ADAPTERS. 478

How to judge a monitor 478

Dot pitch 480

Dot pitch and monitor size 480

Phosphorous materials 480 -

Color monitors 481

Analog and digital monitors 481

Video display RAM and video controller 481

Character box 482

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE
PROGRAMMING 484

CGA (color graphics adapter) 484

Video RAM in CGA 484

Attribute byte in CGA text mode 485

MDA (monochrome display adapter) 486

Video RAM in MDA 486

Attribute byte in IBM MDA 487

EGA (enhanced graphics adapter) 487

EGA video memory and attribute 487

MCGA (multicolor graphics array) 488

VGA (video graphics array) 439

Video memory and attributes in VGA 489

Super VGA (SVGA) and other video adapters 491

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H 491
Finding the current video mode 491
Changing the video mode 491
Setting the cursor position (AH=02) 493
Getting the current cursor position (AH=03) 493
Scrolling the window up to clear the screen (AH=06) 493

Writing a character in teletype mode (AH=0E) 494
Writing a string in teletype mode (AH=13H) 495
Character generator ROM 495

How characters are displayed in text mode 497
Character definition table in VGA 498

Changing the cursor shape using INT 10H 498

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 501
Graphics: pixel resolution, color, and video memory 501
The case of CGA 501
The case of EGA 502
Video memory size and color relation for EGA 502
The case of VGA 502
Video memory size and color relation for VGA 503
The case of SVGA graphics 503
INT 10H and pixel programming 504
Drawing horizontal or vertical lines in graphics mode 504

CHAPTER 17: SERIAL DATA COMMUNICATION AND THE
16450/8250/51 CHIPS 508

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 509
Half- and full-duplex transmission 510
Asynchronous serial communicatior and data framing 511
Start and stop bits 511
Data transfer rate 512
RS232 and other serial 1/0 standards 513
RS232 pins 513
Other serial 1/0 interface standards 514
Data communication classification 514
Examining the RS232 handshaking signals 514

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS
AND BIOS 516

IBMPC COMports 516

Usirg the DOS MODE command 517

Data COM programming using BIOS INT 14H 520

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN
- THE IBMPC 522
8250 pin descriptions 522
The 8250 registers 524
Limitation of the 8250/16450 UART and 16550 530

SECTION 17.4: INTEL 8251 USART AND SYNCHRONQUS
COMMUNICATION 531

Intel's 8251 USART chip 531

Synchronous serial data communication 531

SDLC (serial data link control) 535

Cyclic redundancy checks 535

CHAPTER 18;: KEYBOARD AND PRINTER INTERFACING 541

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 542
Scanning and identifying the key 542
Grounding rows and reading the columns 543

SECTION 18.2: PC KEYBOARD INTERFACING AND
PROGRAMMING 546
Make and break 546
IBM PC scan codes 546
BIOS INT 16H keyboard programming 549
Hardwarg INT 09 role in the IBM PC keyboard 551
Keyboard overrun 552
Keyboard buffer in BIOS data area 552
BIOS keyboard buffer 553
Tail pointer 553
Head pointer 553
PC keyboard technology 553

SECTION. 18.3: PRINTER AND PRINTER INTERFACING IN
THE IBM PC 554

Centronics printer interface pins 554

Data lines and grounds 556

Printer status signals 556

Printer control signals 356

IBM PC printer interfacing 557

Programming the IBM PC printer with BIOS INT 17H 559

What is printer time-out? 560

ASCII control characters 560

Inner working of BIOS INT 17H for printing a character 561

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL

PORTS 562
SPP 562
PS/2 562
How to detect a PS/2-type bidirectional databus 563
EPP 563
ECP 563

Using an LPT port for output 564

LCD connection to the parallel port . 564

Stepper motor connection to the parallel port 564
Data input buffering 566

BIOS data area and LPT 1/O address 566

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES 570

SECTION 19.1: FLOPPY DISK ORGANIZATION 571
Capacity of the floppy disk 572
Formatting disks 572
Disk organization 572

Looking into the boot record 573

Directory 577

Bootable and nonbootable disks 579

FAT (file allocation table) 580

How to calculate sector locations of the FAT and the directory 582

SECTION 19.2: HARD DISKS 583
Hard disk capacity and organization 583
Partitioning 585
Hard disk layout 585
Hard disk boot record 585
Hard disk FAT 585
Clusters 585
Hard disk directory 585
Speed of the hard disk 585
Data encoding techniques in the hard disk 586
Interfacing standards in the hard disk 588
Interleaving 591
Low- and high-level formatting 592
Parking the head 592
Disk caching 592
Disk reliability =~ 592

SECTION 19.3: DISK FILE PROGRAMMING 593
File handle and ervor code 593

CHAPTER 20: THE 80x87 MATH COPROCESSOR. 600

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-
POINT STANDARDS 601

IEEE floating point standard 601

IEEE single-precision floating-point numbers 602

IEEE double-precision floating-point numbers 602

Other data formats of the 8087 604

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 605
Assembling and running 80x87 programs on the IBM PC 605
Verifying the Solution for Examples 20—1 to 20-4 605
80x87 registers 607
Trig functions 612
Integer numbers 614

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE IBM
PC/XT 616 ’

8087 and 8088 connection in the IBM PC/XT 616

How the 8088 and 8087 work together in the IBM PC/XT 618

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 620
Real transfers 620
Integer transfers 621
Packed decimal transfers 621
Addition 621
Subtraction 621
Reversed subtraction 622
Multiplication 622
Division 622
Reversed division 622
Other arithmetic instructions 622
Compare instructions 623
Transcendental instructions 623
Constant instructions 624
Processor control instructions 625

CHAPTER 21: 386 MICROPROCESSOR: REAL vs, PROTECTED MODE 631

SECTION 21.1: 80386 IN REAL MODE 632
What happened to the 80186/188? 632
80186/88 instructions 632
80286 Microprocessor 634
Major changes in the 80386 634
80386 Real mode programming 635
32-bit registers 635
Which end goes first? 636 w
General registers as pointers 636
Scaled index addressing mode 637
Some new 386 instructions 639
MOVSX and MOVZX instructions 639
Bit scan instructions 640

SECTION 21.2: 80386: A HARDWARE VIEW 641
Overview of pin functions of the 80386 642
Bus bandwidth in the 386 645
Data misalignment in the 386 646
1/0 address space in the 386 646

- SECTION 21.3: 80386 PROTECTED MODE 647
Protection mechanism in the 386 647
Virtual memory 647
Segmentation and descriptor table 648
Local and global descriptor fables 651.
64 Terabtyes of virtual memory 651
Paging 652
Going from a linear address to a physical address 653
The bigger the TLB, the better 654
Virtual 8086 mode 654

CHAPTER 22: HIGH-SPEED MEMORY INTERFACING AND CACHE 659

SECTION 22.1: M.EMORY CYCLE TIME OF THE 80X86 660
Introducing wait states into the memory cycle 660

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE
DRAMS 662
Memory access time vs. memory cycle time 662
Types of DRAM 662
DRAM (standard mode) 663
DRAM interfacing using the interleaving method 663
Interleaved drawback 665
Page mode DRAM 667
Static column mode 669
Nibble mode 669
Timing comparison of DRAM modes 671

SECTION 22.3: CACHE MEMORY 672
Cache organization 673
F ully associative cache 673
Direct-mapped cache 674
Set associative ~ 676
Updating main memory 678
Write-through 678
Write-back (copy-back) 678
Cache coherency 679
Cache replacement policy 679
Cache fill block size 679

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 680
EDO DRAM: origin and operation 680
SDRAM (synchronous DRAM) 682
Synchronous DRAM and burst mode 682
SDRAM and interleaving 683
Rambus DRAM 683
Overview of Rambus technology 683
Rambus protocol for block transfer 684

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX 690

- AN

SECTION 23.1: THE 80486 MICROPROCESSOR 691
Enhancements of the 486 691
CLK in the 80486 694
High memory area (HMA) and the 80486 - 695
386, 486 Performance comparison 695
More about pipelining 695

SECTION 23.2: INTEL'S PENTIUM 697
Features of the Pentium 699
Intel's overdrive technology 703

SECTION 23.3: RISC ARCHITECTURE 704
Features of RISC 704
Comparison of sample program for RISC and CISC 707
IBM/Motorola RISC 709

SECTION 23.4: PENTIUM PRO PROCESSOR 710
Pentium Pro: internal architecture 710
Pentium Pro is both superpipelined and superscalar 711
What is out-of-order execution? 711
Branch prediction 714
Bus frequency vs. internal frequency in Pentium Pro 714

SECTION 23.5: MMX TECHNOLOGY 715
DSP and multimedia 715
Register aliasing by MMX 715
Data types in MMX 716

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 717
Program to identify the CPU 717
CPUID instruction and MMX technology 718

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS 724

SECTION 24.1: MS DOS STRUCTURE 725
DOS genealogy 725
From cold boot to DOS prompt 725
DOS standard device names 728
More about CONFIG.SYS and how it is used 728
What is AUTOEXEC.BAT and how is it used? 729
Types of DOS commands 730

SECTION 24.2: TSR AND DEVICE DRIVERS 731
Executing but not abandoning the program 731
How to make a program resident 731
Invoking the TSR 732
Hooking into hardware interrupts 732
Replacing the CS:IP values in the interrupt vector table 732
Writing a simple TSR~ 732
TSR with hot keys 734
Hooking into timer clock INT 08 735
DOS is not reentrant 736
Device drivers 736
Device driver categories 737

CHAPTER 25: MS DOS MEMORY MANAGEMENT 740

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND
CONCEPTS 741 ‘

Conventional memory 741

Upper memory area 741

IBM standard using ROM space in the upper memory area 742
Expanded memory 743

Extended memory 746

High memory area (HMA) 746

Shadow RAM 748

DOS MEM command 748

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING
HIGH 749
Loading high into HMA 749
Finding holes in the upper memory area 750
EMM386.EXE options and switches 751
Loading high TSR and device driver into upper memory area 754
Emulating expanded memory and using UMB in
386/486/Pentium PC 755
How expanded memory is accessed 756

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN
CONSIDERATIONS 759

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 760
MOS vs. bipolar transistors 760
Overview of logic families 761
The case of inverters 761
CMOS inverter 762
Input, output characteristics of some logic families 762
History of logic families 763
Recent advances in logic families 764
Evolution of IC technology in Intel's 80x86 microprocessors 765

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN
CONSIDERATIONS 766

IC fan-out 766

Capacitance derating 768

Power dissipation considerations 770

Dynamic and static currents 771

Power-down option and Intel's SL series 771

Ground bounce 771

Filtering the transient currents using decoupling capacitors 774

Bulk decoupling capacitor 774 .

Crosstalk 774

Transmission line ringing 775

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION
IN DRAM 776
Soft error and hard error 776
Mean time between failure (MTBF) and FIT for DRAM 777
Error detection and correction 778
ECL and gallium arsenide (GaAs) chips 780

CHAPTER 27: ISA, EISA, MCA, LOCAL, AND PC1 BUS 784

SECTION 27.1: ISA, EISA, AND IBM MICRO CHANNEL 785
Master and slave 783
Bus arbitration 785
Bus protocol 785
Bus bandwidth 786
ISA buses 786
36-pin part of the ISA bus 789
Limitations of the ISA bus 791
IBM Micro Channel Architecture (MCA) 793
Major characteristics of MCA 794
EISA bus 795
EISA slot numbering 797
Bus performance comparison 798

SECTION 27.2: VL BUS AND PCI LOCAL BUSES 799
Definition and merits of local bus 799
VL bus (VESA local bus) characteristics 801
PClI.{ocal bus 801
PCI local bus characteristics 801
Plug and play feature 804
PCI connector 804
PCI performance 804

CHAPTER 28; PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 808

SECTION 28.1: BIOS & DOS INTERRUPT PROGRAMMING
WITHC 809
Programming BIOS interrupts with C/C++ 809
Finding the conventional memory size with INT 12H 811
INT 16H and keyboard access 812
Programming INT 21H DOS function calls with C/C++ 812
Accessing segment registers 812
Accessing the carry flag in int86 and intdos functions 814

SECTION 28.2: PROGRAMMING PC HARDWARE WITH C/C++ 815
Accessing 80x86 SEGMENT:OFFSET memory addresses 815
Accessing BIOS data area with C 815
Programming input/output ports with C/C++ 816
Revisiting playing music 816
Accessing parallel printer's (LPT1) data bus with C 816
Finding memory above }MB: the extended memory size ~ 819
Programming the CMOS RAM real-time clock (RTC) 820
Accessing the CMOS RAM bytes 820
Programming CMOS RAM with C/C+ 822

APPENDIX A: DEBUG PROGRAMMING 825

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 847
APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES
APPENDIX D: DOS INTERRUPT 21H AND 33HLISTING 898
APPENDIX E: BIOS INTERRUPTS 924

APPENDIX F: ASCII CODES 940

APPENDIX G: QO ADDRESS MAPS 941

APPENDIX H: IBM éczp_s BIOS DATA AREA 952

APPENDIX I: DATA SHEETS 959
REFERENCES 967

INDEX 969

883

