BIOLOGY

A GUIDE TO THE NATURAL WORLD

David Krogh

CUSTOM CORE EDITION

Second Edition

STUDENT CD-ROM INCLUDED

Essay

Lung Cancer, Smoking, and Statistics in Science 10

Scientific Method. 8

Essays
Notating Chemistry 26
Free Radicals 29

Electron configuration. 24

Preface xxviii

Chapter 1 Science as a Way of Learning: A Guide to the Natural World 3

1.1 How Does Science Impact the Everyday World? 4
A Look at the News 4

1.2 What Does the Public Think, and Know, about Science? 6
Public Attitudes toward Science 6
Public Knowledge of Science 6

1.3 What Is Science? 7
 Science as a Body of Knowledge 7
 Science as a Process: Arriving at Scientific Insights 7
 From Hypothesis to Theory 9

1.4 Biology 12What Is Life? 12Life Is Highly Organized, in a Hierarchical Manner 13

Special Qualities of Biology 13
 Biology's Chief Unifying Principle 15
 The Organization of This Book 15
 Chapter Review 16

Unit 1 Essential Parts: Atoms, Molecules, and Cells

Chapter 2 The Fundamental Building Blocks: Chemistry and Life

The Nature of Matter: The Atom 20
 Protons, Neutrons, and Electrons 20
 Fundamental Forms of Matter: The Element 22

2.2 Matter Is Transformed through Chemical Bonding
Energy Always Seeks Its Lowest State 24
Seeking a Full Outer Shell: Covalent Bonding 24
Reactive and Unreactive Elements 26
Polar and Nonpolar Bonding 26
Ionic Bonding: When Electrons Are Lost or Gained 28
A Third Form of Bonding: Hydrogen Bonding 30

2.3 Some Qualities of Chemical Compounds 30
 Molecules Have a Three-Dimensional Shape 30
 Molecular Shape Is Very Important in Biology 31
 Solutes, Solvents, and Solutions 31
 On to Some Detail Regarding Water 32
 Chapter Review 32

Chapter 3 Water, pH, and Biological Molecules **36**

3.1 The Importance of Water to Life 37

Water Is a Major Player in Many of Life's Processes 37
Water's Structure Gives It Many Unusual Properties 38
Two Important Terms: Hydrophobic and Hydrophilic 40

3.2 Acids and Bases Are Important to Life 40

Acids Yield Hydrogen Ions in Solution; Bases Accept Them 41
Many Common Substances Can Be Ranked According to How Acidic or
Basic They Are 42
The pH Scale Allows Us to Quantify How Acidic or Basic Compounds Are 42
Some Terms Used When Dealing with pH 42
Why Does pH Matter? 42

3.3 Carbon Is a Central Element in Life 44

Carbon as a Starting Ingredient 44
Carbon's Importance Stems from Its Bonding Capacity 45

3.4 The Molecules of Life: Carbohydrates, Lipids, Proteins, and Nucleic Acids 47

The Molecules of Life: Carbonydrates, Lipids, Proteins, and
The Building-Blocks Model of Organic Molecules 47
Carbohydrates: From Simple Sugars to Cellulose 48
Lipids: Oils, Fats, Hormones, and the Outer Lining of Cells 50
Proteins 56
Lipoproteins and Glycoproteins 60
Nucleotides and Nucleic Acids 60
On to Cells 62
Chapter Review 63

Chapter 4 Life's Home: The Cell 68

4.1 Cells Are the Working Units of Life 69

Cells Bring Unity and Continuity to Life 69

4.2 All Cells Are Either Prokaryotic or Eukaryotic 70

Prokaryotic and Eukaryotic Differences 70 Compartmentalization in Eukaryotic Cells 71

4.3 The Eukaryotic Cell 75

The Animal Cell 75

4.4 A Tour of the Animal Cell: Along the Protein Production Path 75

Beginning in the Control Center: The Nucleus 76
Ribosomes 77
The Rough Endoplasmic Reticulum 78
A Pause for the Nucleolus 78
Elegant Transportation: Transport Vesicles 79
Downstream from the Rough ER: The Golgi Complex 79
From the Golgi to the Surface 80

4.5 Outside the Protein Production Path: Other Cell Structures 80

The Smooth Endoplasmic Reticulum 80
Tiny Acid Vats: Lysosomes and Cellular Recycling 81
Extracting Energy from Food: Mitochondria 82

HIGHLIGHTS

Essays

Acid Rain: When Water Is Trouble 44
Dietary Decisions: Should You Cut Carbohydrates? 54

MediaLab

You Are What You Eat: Food and the Molecules of Life 66

DNA's structure. 61

The cell's nucleus. 76-

Essays

The Size of Cells 72
The Stranger Within: Lynn
Margulis and
Endosymbiosis 83
How Did We Learn? First
Sightings: Anton van
Leeuwenhoek 92

Essay

How Did We Learn? The Fluid-Mosaic Model of the Plasma Membrane 109

MediaLab

Balancing Your Imports and Exports: Membrane
Transport 114

Dual-natured molecule. 98

4.6 The Cytoskeleton: Internal Scaffolding 82

Microfilaments 84
Intermediate Filaments 84
Microtubules 84
In Summary: Structures in the Animal Cell 86

4.7 The Plant Cell 86

The Cell Wall 88 The Central Vacuole 89 Plastids 90

4.8 Cell Communication: Why Cells Need Not Be Islands 90

Communication among Plant Cells 90 Communication among Animal Cells 91 On to the Periphery 91 Chapter Review 93

Chapter 5 Life's Border: The Plasma Membrane 96

- 5.1 The Importance of Activity at the Cell's Periphery 97
- 5.2 Why Do We Need the Plasma Membrane? 98

5.3 Four Components of the Plasma Membrane 99

First Component: The Phospholipid Bilayer 99
Second Component: Cholesterol 100
Third Component: Proteins 100
Fourth Component: The Glycocalyx 100
The Fluid-Mosaic Membrane Model 101

Moving Materials In and Out: Diffusions and Gradients 101 Random Movement and Even Distribution 102 Diffusion through Membranes 102

Passive Transport 104 Facilitated Diffusion: Help from Proteins 105

Facilitated Diffusion: Help from Proteins 105
Active Transport 105

5.6 Getting the Big Stuff In and Out 106

Movement Out: Exocytosis 107
Movement In: Endocytosis 107
On to Energy 108
Chapter Review 110

Unit 2 Energy and Its Transformations

Chapter 6 Life's Mainspring: An Introduction to Energy 11

- 6.1 Energy Is Central to Life 117
- 6.2 What Is Energy? 118

The Forms of Energy 118
The Study of Energy: Thermodynamics 118
The Consequences of Thermodynamics 119

6.3	How is Energy Used by Living Things? 120 Kinds of Work for Living Things 120 Up and Down the Great Energy Hill 120
6.4	The Energy Currency Molecule: ATP 121 How Does ATP Function? 122 The ATP/ADP Cycle 122 ATP as Money 122 Between Food and ATP 123
6.5	Efficient Energy Use in Living Things: Enzymes 123 Hastening Reactions 123 Specific Tasks and Metabolic Pathways 123
6.6	Lowering the Activation Barrier through Enzymes 124 How Do Enzymes Work? 124 A Case in Point: Chymotrypsin 125
6.7	Regulating Enzymatic Activity 126 Allosteric Regulation of Enzymes 126 On to Harvesting Energy from Food 127 Chapter Review 127
Cha	apter 7 Vital Harvest: Deriving Energy from Food 130
7.1	Energizing ATP: Adding a Phosphate Group to ADP 132
7.2	Electrons Fall Down the Energy Hill to Drive the Uphill Production of ATP 133 The Great Energy Conveyors: Redox Reactions 133 Many Molecules Can Oxidize Other Molecules 133
7.3	The Three Stages of Cellular Respiration: Glycolysis, the Krebs Cycle, and the Electron Transport Chain 135 Glycolysis Is the First Stage in Energy Harvesting 135 Krebs and the Electron Transport Chain Were Later in Evolving and Are More Efficient 135 An Overview of the Three Stages 135
7.4	First Stage of Respiration: Glycolysis 136 The Steps of Glycolysis in Human Beings 138
7.5	Second Stage of Respiration: The Krebs Cycle 140 Site of Action Moves from the Cytoplasm to the Mitochondria 141 Between Glycolysis and the Krebs Cycle, an Intermediate Step 142 Into Krebs: Why Is It a Cycle? 142
7.6	Third Stage of Respiration: The Electron Transport Chain 144 Visualizing the ETC 145 Where's the ATP? 145 Bountiful Harvest: ATP Accounting 145 Finally, Oxygen 1s Reduced, Producing Water 146
7.7	Other Foods, Other Respiratory Pathways 146 Alternate Respiratory Pathways: Fats as an Example 146

What Happens When Less Energy Is Needed? 146

On to Photosynthesis 147 **Chapter Review 147**

HIGHLIGHTS

The enzyme changes shape. 127

Essays

When Energy Harvesting Ends at Glycolysis, Beer Can Be the Result 138 Energy and Exercise 140

MediaLab

Dietary Fad or Miracle Drug? Using Science to Understand Metabolism 150

ATP synthesis. 144

Essav

How Did We Learn? Plants Make Their Own Food, But How? 164

MediaLab

Capturing Sunlight to Make Food: Photosynthesis 168

Photosystem. 156

Chapter 8 The Green World's Gift: Photosynthesis 152

8.1 Photosynthesis and Energy 153

From Plants, a Great Bounty for Animals 154 Up and Down the Energy Hill Again 154

8.2 The Components of Photosynthesis 154

What Kind of Light Drives Photosynthesis? 154
Where in the Plant Does Photosynthesis Occur? 155
Photosynthesis Central: The Chloroplasts 155
There Are Two Essential Stages in Photosynthesis 156
The Working Unit of Photosynthesis Is Called a Photosystem 156
Energy Transfer in Photosynthesis Works through Redox Reactions 157

8.3 Stage 1: The Steps of the Light-Dependent Reactions 157
 A Chain of Redox Reactions and Another Boost from the Sun 158
 The Physical Movement of Electrons in the Light-Dependent Reactions 158

8.4 What Makes the Light-Dependent Reactions So Important? 158
 The Liberation of Oxygen from Water 158
 The Transformation of Solar Energy to Chemical Energy 158

8.5 Stage 2 of Photosynthesis: The Light-Independent Reactions 159
 Energized Sugar Comes from a Cycle of Reactions: The Calvin Cycle 160

8.6 Photorespiration: Undercutting Photosynthesis 161

8.7 A Different Kind of Photosynthesis: The C₄ Pathway 161
The C₄ Pathway Is Not Always Advantageous 162

8.8 Another Photosynthetic Variation: CAM Plants 162
 Closing Thoughts on Photosynthesis and Energy 163
 Chapter Review 166

Unit 3 How Life Goes On: Genetics

Unit 3 How Life Goes On: Genetics

Essay When Cell Division Runs Amok: Cancer 175

DNA wraps around protein to make chromatin

DNA chromat

Chromatin. 177

Chapter 9 Introduction to Genetics; Mitosis and Cytokinesis 170

9.1 An Introduction to Genetics 171
 The Key to Reproduction, Development, and Maintenance Is DNA 171
 DNA Contains Instructions for Protein Production 172
 How Do Genes Direct the Production of Proteins? 172
 Genetics as Information Management 173
 The Path of Study in Genetics 174

9.2 An Introduction to Cell Division 174 The Replication of DNA 176

9.3 DNA Is Packaged in Chromosomes 177
 Matched Pairs of Chromosomes 178
 Chromosome Duplication as a Part of Cell Division 179

9.4 Mitosis and Cytokinesis 180
The Phases of Mitosis 180
Cytokinesis 182

Variations in Cell Division 182 9.5 Plant Cells 182 Prokaryotes 183 Variations in the Frequency of Cell Division 184 On to Meiosis 184 **Chapter Review 184 Chapter 10** Preparing for Sexual Reproduction: Meiosis 190 10.1 An Overview of Meiosis 192 A Chromosome Reduction before Union of Egg and Sperm 192 10.2 The Steps in Meiosis 192 Meiosis I 194 Meiosis II 196 10.3 What Is the Significance of Meiosis? 196 The Chromosome Duplication Problem Is Solved 196 Meiosis Ensures Genetic Diversity in Two Ways 196 Meiosis and Sex Outcome 198 10.4 Gamete Formation in Humans 200 Sperm Formation 200 Egg Formation 201 10.5 Life Cycles: Humans and Other Organisms Not All Reproduction Is Sexual 202 Variations in Sexual Reproduction 203 On to Patterns of Inheritance 203 Chapter Review 203 Chapter 11 The First Geneticist: Mendel and His Discoveries 206 11.1 Mendel and the Black Box 208 11.2 The Experimental Subjects: Pisum sativum Phenotype and Genotype 210 11.3 Starting the Experiments: Yellow and Green Peas Parental, F₁, and F₂ Generations 210 Interpreting the F₁ and F₂ Results 211 11.4 Another Generation for Mendel 212 Mendel's Generations in Pictures 212 The Law of Segregation 214 11.5 Crosses Involving Two Characters 216 Crosses for Seed Color and Seed Shape 216 The Law of Independent Assortment 217 11.6 Reception of Mendel's Ideas 218 11.7 Incomplete Dominance 218 Genes Code for Proteins 218

11.8 Lessons from Blood Types: Codominance
Getting Both Types of Surface Proteins 220

How to Think of Dominance 220

HIGHLIGHTS

MediaLab

Too Much Division: The Cell Cycle and Cancer 188

Essay

The Revealing Y Chromosome 198

Steps in meiosis. 193

Essays

Proportions and Their Causes: The Rules of Multiplication and Addition 214 Why So Unrecognized? 219

MediaLab

Where Did I Get This Nose? Understanding Mendelian Genetics 228

Punnett square. 217

11.9 Multiple Alleles and Polygenic Inheritance 220

11.10 Genes and Environment 223

11.11 One Gene, Several Effects: Pleiotropy 223

On to the Chromosome 223 **Chapter Review 224**

Essays

Testing for Genetic
Trouble 238
How Did We Learn? Thomas
Hunt Morgan: Using Fruit Flies
to Look More Deeply into
Genetics 244

MediaLab

Do We Know Too Much? Human Genetic Testing 252

The wild and the mutant flies. 246

Chapter 12 Chromosomes and Inheritance 230

- **12.1 Sex-Linked Inheritance in Humans 232**X Chromosome: Male Vulnerability, Female Protection 232
- 12.2 Autosomal Genetic Disorders 233
 Sickle-Cell Anemia 234
 Dominant Disorders 234
 Tracking Traits with Pedigrees 236
- 12.3 Aberrations in Chromosomal Sets: Polyploidy 236
 Valuable in Plants, a Disaster in Humans 237
- 12.4 Incorrect Chromosome Number: Aneuploidy 237
 A Common Cause of Aneuploidy: Nondisjunction 237
 Down Syndrome 238
 Abnormal Numbers of Sex Chromosomes 240
- 12.5 Structural Aberrations in Chromosomes 241
 Deletions 241
 Inversions and Translocations 242
 Duplications 242
 How Did We Learn? 243
 On to DNA 243
 Chapter Review 247

Essay

How Did We Learn? Getting Clear about What Genes Do: Beadle and Tatum **264**

Normal DNA. 261

Chapter 13 DNA Structure and Replication 254

- 13.1 What Do Genes Do, and What Are They Made of? 255

 DNA Structure and the Rise of Molecular Biology 256
- 13.2 Watson and Crick: The Double Helix 257
- The Components of DNA and Their Arrangement 259
 The Structure of DNA Gives Away the Secret of Replication 259
 The Structure of DNA Gives Away the Secret of Protein Production 260
 The Building Blocks of DNA Replication 260
- 13.4 Mutations: Another Name for a Permanent Change in DNA Structure 261
 An Example of Mutations Passed Along in a Line of Cells: Cancer 261
 The Value of Mistakes: Evolutionary Adaptation 263
 How Did We Learn? 263
 On to How Genetic Information Is Put to Use 263
 Chapter Review 264

Chapter 14 How Proteins Are	e Made: Genetic Transcription, Translation,
and Regulation	268

14.1 The Structure of Proteins 269

Synthesizing Many Proteins from 20 Amino Acids 269

14.2 Protein Synthesis in Overview: Transcription and Translation 270

The First Stage of Protein Synthesis: Transcription 272
The Second Stage in Protein Synthesis: Translation 273

14.3 The Importance of the Genetic Code 274

Cracking the Code 275
A Redundant Code 275
The Genetic Code and Life's Unity 275

14.4 A Closer Look at Protein Synthesis 276

Protein Synthesis Begins: Transcription 276
Translation in Detail 277

14.5 Genetic Regulation 281

DNA Is the Cookbook, Not the Cook 281 A Model System in Gene Regulation: The Operon 281

14.6 The Magnitude of the Metabolic Operation 283

The Number of Proteins Utilized 283
The Size of the Genome 284

14.7 What Is a Gene? 284

How Did We Learn? 284
On to Biotechnology 284
Chapter Review 286

Chapter 15 The Future Isn't What It Used to Be: Biotechnology 292

15.1 What Is Biotechnology? 294

15.2 Some Tools of Biotechnology 294

Restriction Enzymes 294

Another Tool of Biotech: Plasmids 295

Using Biotech's Tools: Getting Human Genes into Plasmids 296

Getting the Plasmids Back inside Cells, Turning out Protein 297

A Plasmid Is One Kind of Cloning Vector 297

15.3 Cloning and the Wider World of Biotechnology 297

Reproductive Cloning: How Dolly Was Cloned 298
Reproductive Cloning and Recombinant DNA 299
Cloning and Xenotransplantation 299
Human Cloning: Just Around the Corner? 300

15.4 Other Biotechnology Processes: PCR 301

15.5 Visualizing DNA Sequences 302

Running DNA through a Gel 303 Sequencing Requires a Different Operation 304

15.6 Decoding the Human Genome 304

The Significance of Decoding the Human Genome 307

HIGHLIGHTS

Essays

Making Sense of "Junk"
DNA 280
How Did We Learn? Cracking
the Genetic Code 285

MediaLab

Can We Stop the Cycle? DNA to RNA to Protein **290**

Transfer RNA structure. 277

Essav

DNA in the Courtroom 305

MediaLab

Holding Out Promise or Peril? Biotechnology **318**

Plasmids. 295

Genetic engineering. 296

Surprises from the First Drafts 307 Limitations of Human Genome Sequencing 308

15.7 The Next Phase in Genetics: Genomics and Proteomics 309 Biology and Computer Science 309

15.8 Genetically Modified Foods 310 GM Foods Are with Us Now 311 Other Concerns about GM Foods 312 A Consensus Regarding Regulation? 312

The Future of GM Foods 312

15.9 Ethical Questions in Biotechnology 313

Is It Inherently Unethical for Humans to Genetically Modify Themselves or Other Organisms? 313

Are Biotech Diagnoses Running Far Ahead of Biotech Treatments? 313

Will Biotechnology Lead to "Genetic Discrimination"? 314

On to Evolution 314

Chapter Review 314

Unit 4 Life's Organizing Principle: Evolution and the Diversity of Life

Chapter16 An Introduction to Evolution: Charles Darwin, Evolutionary Thought, and the Evidence for Evolution **320**

Essay Can Darwinian Theory Make Us Healthier? 331

Charles Darwin. 323

16.1 Evolution and Its Core Principles 322

Common Descent with Modification 322
Natural Selection 322
The Importance of Evolution as a Concept 322
Evolution Affects Human Perspectives Regarding Life 322

16.2 Charles Darwin and the Theory of Evolution 323 Darwin's Contribution 323 Darwin's Journey of Discovery 324

16.3 Evolutionary Thinking before Darwin 32! Charles Lyell and Geology 325 Jean-Baptiste de Lamarck and Evolution 326 Georges Cuvier and Extinction 326

16.4 Darwin's Insights Following the Beagle's Voyage Perceiving Common Descent with Modification 327 Perceiving Natural Selection 327

- 16.5 Aifred Russel Wallace 328
- 16.6 Descent with Modification Is Accepted 328

16.7 Darwin Doubted: The Controversy over Natural Selection 329 Coming to an Understanding of Genetics 329 Vindicating Natural Selection's Role in Evolution 329 Darwin Triumphant: The Modern Synthesis 330

16.8 Opposition to the Theory of Evolution 330The False Notion of a Scientific Controversy 330

16.9	The Evidence for Evolution 332	
	Radiometric Dating 332	
	Fossils 332	
	Comparative Morphology and Embryology	333
	Evidence from Gene Modification 333	
	Experimental Evidence 334	
	On to How Evolution Works 335	
	Chapter Review 335	

Chapter 17 The Means of Evolution: Microevolution 338

17.1 What is It That Evolves? 339 Populations Are the Essential Units that Evolve 339 Genes Are the Raw Material of Evolution 340

17.2 Evolution as a Change in the Frequency of Alleles 340

17.3 Five Agents of Microevolution 341 Mutations: Alterations in the Makeup of DNA 342 Gene Flow: When One Population Joins Another 342 Genetic Drift: The Instability of Small Populations 342 Nonrandom Mating: When Mating Is Uneven Across a Population 345 Natural Selection: Evolution's Adaptive Mechanism 346

17.4 What is Evolutionary Fitness? 348 Gaiapagos Finches: The Studies of Peter and Rosemary Grant 348

17.5 Three Modes of Natural Selection 349 Stabilizing Selection 350 Directional Selection 350 Disruptive Selection 350 On to the Origin of Species 351

Chapter Review 351

Chapter 18 The Outcomes of Evolution: Macroevolution 356

18.1 What Is a Species? 357

18.2 How Do New Species Arise? 359 Two Modes of Speciation: Cladogenesis and Anagenesis 359 Speciation Occurs When Populations Cease to Interpreed 359

Speciation Occurs When Populations Cease to Interbreed 359
The Role of Geographic Separation: Allopatric Speciation 359
Reproductive Isolating Mechanisms Are Central to Speciation 360
Six Intrinsic Reproductive Isolating Mechanisms 361
Sympatric Speciation 363

18.3 When Is Speciation Likely to Occur? 365

Specialists and Generalists 365 New Environments: Adaptive Radiation 366 Is Speciation Smooth or Jerky? 366

18.4 The Categorization of Earth's Living Things 367 Taxonomic Classification and the Degree of Relatedness 368 A Taxonomic Example: The Common House Cat 369

18.5 Constructing Evolutionary Histories: Classical Taxonomy and Cladistics 369 Classical Taxonomy Looks for Similarities 369

HIGHLIGHTS

Essay Lessons from the Cocker Spaniel: The Price of Inbreeding 346

MediaLab Are Bacteria Winning the War? Natural Selection in Action 354

The genetic basis of evolution. 341

Essay New Species through Genetic Accidents: Polyploidy 362

En route to speciation? 360

Essay
Physical Forces that Have
Shaped Evolution: Climate,
Extraterrestrial Objects, and
Continental Drift 380

Africa: Cradle of the humans. 398

Structure of a fungus. 421

Another System for Interpreting the Evidence: Cladistics 370
Should Anything but Relatedness Matter in Classification? 372
On to the History of Life 372
Chapter Review 373

Chapter 19 A Slow Unfolding: The History of Life on Earth **376**

19.1 The Geologic Timescale: Life Marks Earth's Ages 379
 Transition Does Not Always Mean Death: The Cambrian Explosion 382
 What Is "Notable" in Evolution Hinges on Values 382
 The Kingdoms of the Living World Fit into Three Domains 382

19.2 Tracing the History of Life on Earth: How Did Life Begin? 382
In What Kind of Environment Did Life Begin? 383
What Was the Source of the Raw Materials for Life? 383
Life May Have Begun in Very Hot Water 383
The RNA World 384
Adding Life's Elaborations to Replication 385

19.3 The Tree of Life 386

19.4 A Long First Period: The Precambrian 387
 The Slow Pace of Change in the Precambrian 387
 Notable Precambrian Events 387

19.5 The Cambrian Explosion: A Real Milestone or the Appearance of One? 38

19.6 The Movement onto the Land: Plants First 389
Adaptations of Plants to the Land 389
Another Plant Innovation: A Vascular System 390
Plants with Seeds: The Gymnosperms and Angiosperms 390

19.7 Animals Follow Plants onto the Land 391

Insects onto Land 391
Vertebrates Move onto Land 391
The Evolution of Mammals 393
The Primate Mammals 393

19.8 The Evolution of Human Beings 394

Interpreting Fossil Evidence 396
The Descent from the Trees 396
Into the Genus Homo: Habilis and Ergaster 397
Human Beings Emerged in Africa but Eventually Traveled 397
One More Possibility: Homo antecessor 399
Modern Homo Sapiens 400
On to the Diversity of Life 400
Chapter Review 400

The Following Chapters are Available as Custom Chapters

Chapter 20 Pond Dwellers, Log Eaters, and Self-Feeders: The Diversity of Life **404**

20.1 Viruses: Making a Living by Hijacking Cells 408
The Trouble Viruses Cause 409

For the Defense: The Immune System and Vaccines 409 How Did Viruses Originate? 410

20.2	Domain Bacteria: Masters of Every Environment 412
	Intimate Strangers: Humans and Bacteria 412
	Bacterial Roles in Nature 412
	Common Features of Bacteria 413
	Bacterial Organization and Biofilms 414
	Fighting Disease-Causing Bacteria with Antibiotics 414
	Modes of Nutrition: Bacteria Do It All 415

- 20.3 Domain Archaea: From Marginal Player to Center Stage 416
 Prospecting for "Extremophiles" 416
- 20.4 Domain Eukarya: Protists, Plants, Fungi, and Animals 417
- 20.5 Kingdom Protista: An Undefinable Collection 418
 Means of Mobility in Protists 419
 True Multicellularity: A Division of Labor 419
 Single-Celled Algae: The Importance of Phytoplankton 42
- 20.6 Kingdom Fungi: Life as a Web of Slender Threads
 The Important Roles of Fungi in Nature 421
 A Phase of Life Unique to Fungi: Dikaryotic Cells 423
 Fungal Associations: Lichens and Mycorrhizae 423
- 20.7 Kingdom Plantae: The Foundation for Much of Life 425
 What Are the Characteristics of Plants? 425
 There are Four Main Categories of Plants: Bryophytes, Seedless Vascular Plants, Gymnosperms, and Angiosperms 426
 Reproduction through Pollen and Seeds 429
 Pollination Can Be an Important Plant-Animal Interaction 430
 On to a Look at Animals 432
 Chapter Review 432

Chapter 21 Movers and Shakers: The Animal Kingdom 436

21.1 What Is An Animal? 438

21.2 Animal Types: The Family Tree 439 Additions 1 and 2: Tissues and Symmetry 439 Addition 3: Bilateral Symmetry 440 Addition 4: A Body Cavity 440 A Split in the Animal Kingdom: Protostomes and Deuterostomes 441

- 21.3 Phylum Porifera: The Sponges 442
- 21.4 Phylum Cnidaria: Jellyfish and Others 443
- 21.5 Phylum Platyhelminthes: Flatworms 446
- 21.6 Phylum Nematoda: Roundworms 447
- 21.7 Phylum Mollusca: Snails, Oysters, Squid, and More 448
- 21.8 Phylum Annelida: Segmented Worms 450
- 21.9 Phylum Arthropoda: So Many, but Why? 452
 Other Uniramians: Millipedes and Centipedes 454
 Subphylum Crustacea: Shrimp, Lobsters, Crabs, Barnacles, and More 455
 Subphylum Chelicerata: Spiders, Ticks, Mites, Horseshoe Crabs, and More 455

HIGHLIGHTS

Essavs

The Unsolvable Taxonomy
Problem 407
Not Alive, but Deadly: Prions
and 'Mad Cow' Disease 410
Modes of Nutrition: How Organisms Get What They Need to
Survive 415

Lichens growing on a boulder. 423

Cheetah. 458

Bay scallops. 448

Essays What Is Plant Food? 477

Keeping Cut Flowers
Fresh 483
Ripening Fruit Is a Gas 485

Fluid-transport structure. 483

Essays

A Tree's History Can Be Seen in Its Wood **507** The Syrup for Your Pancakes Comes from Xylem **510**

MediaLab

Why Do We Need Plants Anyway? The Importance of Plant Diversity **524**

21.10 Phylum Echinodermata: Sea Stars, Sea Urchins, and More 456

21.11 Phylum Chordata: Mostly Animals with Backbones 458

What Is a Vertebrate? 458
Diversity among the Vertebrates 459
On to Plants 466

Chapter Review 468

Unit 5 A Bounty That Feeds Us All: Plants

Chapter 22 An Introduction to Flowering Plants 472

22.1 The Importance of Plants 473

Other Roles of Plants 475 A Focus on Flowering Plants 475

22.2 The Structure of Flowering Plants 475

The Basic Division: Roots and Shoots 475 Roots: Absorbing the Vital Water 476 Shoots: Leaves, Stems, and Flowers 478

22.3 How Flowering Plants Function 480

Reproduction in Angiosperms 480
Plant Plumbing: The Transport System 482
Communication: Hormones Affect Many Aspects of Plant Functioning 484
Plant Growth: Indeterminate and at the Tips 486
Defense and Cooperation 486

22.4 Responding to External Signals 487

Responding to Light: Phototropism 487
Responding to Gravity: Gravitropism 488
Responding to Contact: Thigmotropism 489
Responding to the Passage of the Seasons 489
On to a More Detailed Picture of Plants 490
Chapter Review 491

Chapter 23 Form and Function in Flowering Plants 494

23.1 Two Ways of Categorizing Flowering Plants 496

The Life Spans of Angiosperms: Annuals, Biennials, and Perennials 496
A Basic Difference among Flowering Plants: Monocotyledons and Dicotyledons 497

23.2 There Are Three Fundamental Types of Plant Cells 498

Parenchyma Cells 498
Sclerenchyma Cells 498
Collenchyma Cells 498
Parenchyma as Starting-State Cells 498

23.3 The Plant Body and Its Tissue Types 499

First: A Distinction between Primary and Secondary Growth Tissue 499
Dermal Tissue Is the Plant's Interface with the Outside World 499
Ground Tissue Forms the Bulk of the Primary Plant 500
Vascular Tissue Forms the Plant's Transport System 500
Meristematic Tissue and Primary Plant Growth 502

23.4	How a Plant Grows: Apical Meristems Give Rise to the Entire Plant 502 A Closer Look at Root and Shoot Apical Meristems 503 How the Primary Tissue Types Develop 504	HIGHLIGHTS
23.5	Secondary Growth Comes from a Thickening of Two Types of Tissues 505	505 SINK
23.6	How the Plant's Vascular System Functions 509 How the Xylem Conducts Water 509 Food the Plant Makes Is Conducted through Phloem 511 Water Flows from Xylem to Phloem and Back Again 513	eugar Wäter
23.7	and the second s	root cell sel elements Food transport. 512
23.8	Embryo, Seed, and Fruit: The Developing Plant 518 The Development of a Seed 518 The Development of Fruit 518 Development of the Embryo and Germination of the Seed 519	

Unit 6 What Makes the Organism Tick? **Animal Anatomy and Physiology**

Chapter 24 Introduction to Animal Anatomy and Physiology: The Integumentary, Skeletal, and Muscular Systems 526

24.1 The Sciences of Anatomy and Physiology 527

24.2 What Are the General Characteristics of Humans? 528

Internal Body Cavity 528 Internal Skeleton 528 Internal Temperature Regulation 528

24.3 Animal Architecture and Organization 529

24.4 The Animal Body Has Four Basic Tissue Types 529

Epithelial Tissue 530 Connective Tissue 530 Muscle Tissue 532 Nervous Tissue 532

On to Animals 520 Chapter Review 520

24.5 A Summary of the Organ Systems of the Human Body 532

Organ Systems 1: Body Support and Movement—The Integumentary, Skeletal, and Muscular Systems 534

Organ Systems 2: Coordination, Regulation, and Defense—The Nervous, Endocrine, and Lymphatic Systems 534

Organ Systems 3: Transport and Exchange with the Environment—The Cardiovascular, Respiratory, Digestive, and Urinary Systems 535

Essay Doing Something about Osteoporosis While You Are Young **540**

Bone features. 531

Adipose tissue. 539

24.6 The Integumentary System: Skin and More 536

The Structure of Skin 536 Integumentary Structures Associated with Skin 537

24.7 Body Support and the Skeleton 538

Structure of Bone 538 The Human Skeleton 541 Joints 541

24.8 Muscles and Movement 542

Makeup of Muscle 543
How Does a Muscle Contract? 543
Major Muscles of the Body 545
On to the Nervous, Endocrine, and Immune Systems 545
Chapter Review 545

Chapter 25 Control and Defense: The Nervous, Endocrine, and Immune Systems **550**

25.1 Overview of the Nervous System 551

Cells of the Nervous System 552 Nerves 553

25.2 How Does Nervous-System Communication Work? 553

Nerve Signal Transmission within a Neuron 553
Transmission along the Whole Axon: The Action Potential 554
Communication between Cells: The Synapse 555

25.3 The Spinal Cord 556

The Spinal Cord and the Processing of Information 556 Quick, Unconscious Action: Reflexes 557

25.4 The Autonomic Nervous System 558

The Sympathetic and Parasympathetic Divisions of the Autonomic Nervous System 559

25.5 The Human Brain 559

Six Major Regions of the Brain 559

25.6 The Nervous System in Action: Our Sense of Vision 560

Three Tasks for Vision 561

25.7 The Endocrine System: Hormones and How They Work 565

Types of Hormones 566 Actions of Hormones 566

25.8 How Is Hormone Secretion Controlled? 566

Negative Feedback 567
Positive Feedback 567
A Hierarchy of Hormonal Control: The Hypothalamus 568
The Pituitary Gland Link 568
The Anterior Pituitary Gland 568
The Posterior Pituitary Gland 570

25.9 The Immune System: Defending the Body from Invaders 570 Two Basic Types of Defense: Nonspecific and Specific 570

The human eye. 561

25.10 Nonspecific Defenses of the Immune System 572

Physical Barriers 573

Phagocytes 573

Immunological Surveillance 573

Interferons 573

Complement 573

Inflammation 573

Fever 573

25.11 Specific Defenses of the Immune System 574

25.12 Antibody-Mediated and Cell-Mediated Immunity 576

The Body's Lymphatic System 576

25.13 Antibody-Mediated Immunity in Detail 577

The Fantastic Diversity of Antibodies 577

The Cloning of Selected Cells in Antibody-Mediated Immunity 578

Fighters and Sentries: The Differentiation of B Cells 578

Action of the Antibodies 578

25.14 Cell-Mediated Immunity in Detail 579

Macrophages Bearing Invaders: Antigen-Presenting Cells 579

Activated Helper T Cells Are Central to the Immune Response 580

25.15 Allergies and Autoimmune Disorders 580

25.16 AIDS: Attacking the Defenders 581

On to Transport and Exchange 582

Chapter Review 582

Chapter 26 Transport, Nutrition, and Exchange: Blood, Breath, Digestion, and Elimination **590**

26.1 The Cardiovascular System and Body Transport 591

Blood Has Two Major Components: Formed Elements and Plasma 592

Blood Vessels 594

Systems of Circulation 595

26.2 The Heart and the Circulation of Blood 595

Following the Path of Circulation 596

26.3 The Heart's Own Blood Supply: What is a Heart Attack? 596

26.4 Getting the Goods to and from the Cells: The Capillary Beds 597

Forces That Work on Exchange through Capillaries 598

Muscles and Valves Work to Return Blood to the Heart 598

26.5 The Respiratory System and the Exchange of Gases 598

The Functions of Respiration 599

Structure of the Respiratory System 599

Steps in Respiration: Breathing 600

Steps in Respiration: Exchange of Gases 600

Steps in Respiration: Oxygen and Carbon Dioxide Transport 601

26.6 The Digestive System 601

The Digestive Process in Overview 601

26.7 Components of the Digestive System 602

The Digestive Tract in Cross Section 603

HIGHLIGHTS

MediaLab

How Does Your Body Fight the Flu? Understanding the Immune System 588

Endocrine cells releasing hormone. **566**

Circulation's big picture. 595

Contents

HIGHLIGHTS

Where air and blood meet. 599

The Oral Cavity 603

The Pharynx and Esophagus 604

The Stomach 604

The Small Intestine 605

The Pancreas 606

The Liver and Gallbladder 606

The Large Intestine 606

26.8 Different Digestive Processes for Different Foods and Nutrients 607

Carbohydrates 608

Lipids 608

Proteins 608

Water and Vitamins 608

26.9 The Urinary System in Overview 609

Structure of the Urinary System 609

26.10 How the Kidneys Function 610

First Kidney Function: Filtration in Bowman's Capsule 611

Second Kidney Function: Reabsorption from the Nephron Tubule 612

Third Kidney Function: Secretion into the Nephron Tubule 612

Fourth Kidney Function: The Loop of Henle, the Collecting Duct, and the Conservation of Water 612

Hormonal Control of Water Retention 612

26.11 Urine Transport, Storage, and Excretion 613

The Urinary Bladder 613

The Urethra 613

Urine Excretion 614

On to Development and Reproduction 614

Chapter Review 614

Chapter 27 An Amazingly Detailed Script: Animal Development 62

27.1 General Processes in Development 621

Two Cells Become One: Fertilization 622

Three Phases of Embryonic Development 622

A Theme in Development: From the General to the Specific 625

27.2 What Factors Underlie Development? 625

The Process of Induction 625

The Interaction of Genes and Proteins 625

Two Lessons in One Gene 626

27.3 Developmental Tools: Sculpting the Body 627

27.4 The Promise of Stem Cells 628

Cell Fates: Determined and Committed 628

The Breakthrough in Embryonic Stem Cells 629

A Further Advance: Adult Stem Cells 629

The Bigger Picture of Stem Cells 630

The Ethical Debate over Embryonic Stem Cells 630

The Potential of Stem Cells 631

On to Human Reproduction 631

Chapter Review 631

Shaping by removing. 628

Chapter 28 How the Baby Came to Be: Human Reproduction 634

28.1 Overview of Human Reproduction and Development 635 Reproduction in Outline 636

28.2 The Female Reproductive System 638

The Female Reproductive Cycle 638 How Does an Egg Develop? 639 Changes through the Female Life Span 640 The Consequences of Follicle Loss 642

28.3 The Male Reproductive System 643

Structure of the Testes 644
Male and Female Gamete Production Compared 644
Further Development of Sperm 644
Supporting Glands 646

28.4 The Union of Sperm and Egg 646

How Sperm Get to the Egg 646 How Latecomers Are Kept Out 647

28.5 Human Development Prior to Birth 648

Early Development 649
Development through the Trimesters 650

28.6 The Birth of the Baby 653

On to Ecology 653 **Chapter Review 654**

HIGHLIGHTS

Essays

Hormones and the Female Reproductive Cycle 640 Methods of Contraception 645 Sexually Transmitted Disease 648

MediaLab

Are Test Tube Babies the Solution? Understanding Reproductive Problems 658

Near the moment of conception. 647

Unit 7 The Living World as a Whole: Ecology and Behavior

Chapter 29 An Interactive Living World: Populations and Communities in Ecology **660**

29.1 The Study of Ecology 662

Ecology Is Not Environmentalism 662 Path of Study 662

29.2 Populations: Size and Dynamics 663

Estimating the Size of a Population 664
Growth and Decline of Populations over Time 664
Calculating Exponential Growth in a Population 666
Logistical Growth of Populations: Reality Makes an Appearance 667

29.3 r-Selected and K-Selected Species 668

K-Selected, or Equilibrium, Species 668
r-Selected, or Opportunist, Species 669
Survivorship Curves: At What Point Does Death Come in the Life Span? 670

29.4 Thinking about Human Populations 670

Survivorship Curves Are Constructed from Life Tables 670
Population Pyramids: What Proportion of a Population Is Young? 671
Immigration and Population Change: The United States 671

Keystone species: Pisaster ochraceus. **674**

Essay

Purring Predators: Housecats and Their Prey 679

MediaLab

Can Earth Support All of Us? Population Growth Patterns **690**

Predator and prey populations. 679

The Increase in World Population 672

Current Population Impacts on Quality of Life and the Environment 672

29.5 Communities: Looking at the Interactions of Many Populations 674 Large Numbers of a Few Species: Ecological Dominants 674

Importance beyond Numbers: Keystone Species 674 Variety in Communities: What Is Biodiversity? 675

29.6 Types of Interaction among Community Members 676

Two Important Community Concepts: Habitat and Niche 676
Competition among Species in a Community 676
Other Modes of Interaction: Predation and Parasitism 678
Parasites: Making a Living from the Living 679
The Effect of Predator-Prey Interactions on Evolution 680
Beneficial Interactions: Mutualism and Commensalism 681
Coevolution: Species Driving Each Other's Evolution 682

29.7 Succession in Communities 682

An Example of Primary Succession: Alaska's Glacier Bay 684 Common Elements in Primary Succession 685 Lessons in Succession from Mount St. Helens 685 On to Ecosystems and Biomes 686 **Chapter Review 686**

Essays

A Cut for the Middleman: Livestock and Food **706** Good News about the Environment **721**

MediaLab

El Niño and the Greenhouse Effect: How Climate Affects Our Weather, Food, and Water Supplies **730**

The High Plains Aquifer. 699

Chapter 30 An Interactive Living World: Ecosystems and the Biosphere **692**

30.1 The Ecosystem Is the Fundamental Unit of Ecology 693

30.2 Abiotic Factors Are a Major Component of Any Ecosystem 694

The Cycling of Ecosystem Resources 694
Human Beings Are Not Separate from the Earth They Live on 700

30.3 How Energy Flows through Ecosystems 700

Producers, Consumers, and Trophic Levels 701
Accounting for Energy Flow through the Trophic Levels 703
Primary Productivity Varies across the Earth by Region 705

30.4 Earth's Physical Environment 706

Earth's Atmosphere 706
The Worrisome Issue of Ozone Depletion 707
The Worrisome Issue of Global Warming 708
Earth's Climate: Why Are Some Areas Wet and Some Dry, Some Hot and Some Cold? 711

The Circulation of the Atmosphere and Its Relation to Rain 711 Mountain Chains Affect Precipitation Patterns 713 The Importance of Climate to Life 713

30.5 Earth's Biomes 713

Cold and Lying Low:Tundra 714

Northern Forests:Taiga 715

Hot in Summer, Cold in Winter:Temperate Deciduous Forest 715

Dry but Sometimes Very Fertile: Grassland 716

	Lush Life, Now Threatened: Tropical Rainforest 718
30.6	Life in the Water: Aquatic Ecosystems 719 Marine Ecosystems 719 Freshwater Systems 723 Life's Largest Scale: The Biosphere 724 On to Animal Behavior 725 Chapter Review 725
Cha	pter 31 Animal Behavior 732
31.1	The Field of Behavioral Biology 733 Behavioral Biology Asks 'What, 'Why' and 'How' 734 Proximate and Ultimate Causes 735
31.2	The Web of Behavioral Influences 736
31.3	Internal Influences on Behavior 737 Reflexes 737 Action Patterns 737 Orientation Behavior: Taxis 739 Biological Rhythms: The Internal Clock 739 The Effects of Hormones 741
31.4	Learning and Behavior 741 Establishing Relationships: Imprinting 741 Other Forms of Learning 742
31.5	Behavior in Action: How Birds Acquire Their Songs 747
31.6	Social Behavior 747 Why Live Alone – or Together? 748 Dominance Hierarchies 749 Territoriality 749 Eusociality: Life in Animal Societies 750
31.7	Altruism in the Animal Kingdom Inclusive Fitness at Work 753 Reciprocal Altruism 754 Learning about Animal Navigation 754 On To The Rest of Life 754 Chapter Review 757

Chaparral: Rainy Winters, Dry Summers 717
The Challenge of Water: Deserts 717

HIGHLIGHTS

Global warming, disappearing glaciers. **710**

Essays Biological Rhythms and Sports 740 Are Men 'Naturally' Promiscuous and Women Reserved? 744 How Did We Learn? How Do Sea Turtles Find Their Way? 755

Testosterone levels and singing. 741

Appendix App-1
Answers to Multiple-Choice and Brief Review Questions A-1
Glossary G-1
Photo Credits PC-1
Index I-1