

Marko Zlokarnik

Stirring

Theory and Practice

Contents

Preface xii

	Symbols xv
1	Stirring, general 1
1.1	Stirring operations 1
1.2	Mixing equipment 2
1.2.1	Mixing tanks and their fittings 2
1.2.2	Stirrer types and their operating characteristics 6
1.2.3	Nozzles and spargers 11
1.2.4	Sealing of stirrer shafts 12
1.3	Mechanical stress 14
1.3.1	Stress on baffles 14
1.3.2	Stress on stirrer heads 14
1.3.3	Tank vibrations 15
1.3.4	Wear of stirrer heads 15
1.3.5	Shear stress on the particulate material beinig mixed 16
1.4	Flow and Turbulence 20
1.4.1	Introduction 20
1.4.2	Statistical theory of turbulence 21
1.4.2.1	Description of turbulent flow 23
1.4.2.2	Energy spectra 25
1.4.3	Experimental determination of state of flow flow and its mathematical
	modeling 27
1.4.3.1	Homogeneous material systems 27
1.4.3.2	Heterogeneous G/L material systems 34
1.4.3.3	Heterogeneous L/L material systems 34
1.4.4	Pumping capacity of stirrers 34
1.4.5	Surface motion 36
1.4.5.1	Vortex formation. Definition of geometric parameters 36
1.4.5.2	Gas entrainment via vortex 39
1.4.6	Micro-mixing and reactions 40
1.4.6.1	Introduction 40
1.4.6.2	Theoretical prediction of micro-mixing 43
1.4.6.3	Chemical reactions for determining micro-mixing 45

1.4.6.4	Experimental determination of micro-mixing 48
1.5	Short introduction to rheology 50
1.5.1	Newtonian liquids 50
1.5.2	Non-Newtonian liquids 51
1.5.3	Dimensionless representation of material functions 57
1.6	Short introduction to dimensional analysis and scale-up 60
1.6.1	Introduction 60
1.6.2	Dimensional analysis 62
1.6.2.1	Fundamentals 62
1.6.2.2	Dimensions and physical quantities 62
1.6.2.3	Primary and secondary quantities; dimensional constants 62
1.6.2.4	Dimensional systems 63
1.6.2.5	Dimensional homogeneity of a physical relationship 63
1.6.2.6	The pi theorem 66
1.6.3	Construction of pi sets using matrix transformation 66
1.6.3.1	Drawing-up of a relevance list for a problem 66
1.6.3.2	Determination of the characteristic geometric parameter 67
1.6.3.3	Constructing and solving of the dimensional matrix 68
1.6.3.4	Determination of the process characteristics 69
1.6.4	Fundamentals of the model theory and scale-up 70
1.6.4.1	Model theory 70
1.6.4.2	Model experiments and scale-up 71
1.6.5	Remarks regarding the relevance list and experimental technique 72
1.6.5.1	Taking into consideration of the acceleration due to gravity $g = 72$
1.6.5.2	Introduction of intermediate quantities 72
1.6.5.3	Dealing with material systems with unknown physical properties 72
1.6.5.4	Experimental methods for scale-up 73
1.6.6	Conclusions 73
1.6.6.1	Advantages of use of dimensional analysis 73
1.6.6.2	Range of applicability of dimensional analysis 74
_	
2	Stirrer power 76
2.1	Stirrer power in a homogeneous liquid 76
2.1.1	Newtonian liquids 76
2.1.2	Non-Newtonian liquids 82
2.2	Stirrer power in G/L systems 83
2.2.1	Newtonian liquids 83
2.2.2	Non-Newtonian liquids 90
2.3	Flooding point 94
3	Homogenization 97
3.1	Definition of macro- and micro-mixing 97
3.2	Definition of degree of mixing 98
3.3	Determined Call 1 Control 1 1
3.3.1	Physical methods 101

3.3.2	Chemical measurement methods 102
3.3.3	Degree of mixing and molar excess 102
3.4	Homogenization characteristics 104
3.4.1	Material systems without density and viscosity differences 104
3.4.2	Material systems with density and viscosity differences 110
3.4.3	Non-Newtonian mixtures 112
3.5	Optimization to minimum mixing work 116
3.6	Scale-up of the homogenization process 118
3.7	Homogenization in storage tanks 122
3.7.1	Homogenization with propellers 122
3.7.2	Homogenization with liquid jets 123
3.7.3	Homogenization through rising up gas bubbles 123
4	Gas-liquid contacting 126
4.1	Introduction 126
4.2	Physical fundamentals of mass transfer 126
4.2.1	Determining the driving force 126
4.2.2	Temperature dependence of $k_L a$ 129
4.2.3	Saturation concentration c_s of the gas in the liquid 130
4.2.4	Definition of the characteristic concentration difference Δc 130
4.2.5	Consideration of the absorption process from a physical and industrial
	viewpoint 132
4.3	Determination of $k_{\rm L}a$ 132
4.3.1	Unsteady-state measurement methods 132
4.3.1.1	Measurement with oxygen electrodes 133
4.3.1.2	Pressure gauge method 133
4.3.1.3	Dynamic response methods 134
4.3.2	Steady-state methods 134
4.3.2.1	Sulfite methods 134
4.3.2.2	Hydrazine methods 136
4.3.2.3	Sodium sulfite feed technique 137
4.3.2.4	Hydrogen peroxide method 137
4.4	Mass transfer characteristics for the G/L system 138
4.4.1	Establishing mass transfer relationships 138
4.4.2	Mass transfer relationship: experimental data 139
4.4.3	Sorption characteristics in the coalescing system water/air 141
4.4.4	Sorption characteristics in coalescence-inhibited systems 143
4.4.5	Sorption characteristics in rheological material systems 145
4.4.6	Sorption characteristic in biological material systems 149
4.5	Interfacial area per unit volume a 151
4.5.1	Definition of <i>a</i> 151
4.5.2	Determination of a 152
4.5.2.1	Physical methods 152
4.5.2.2	Chemical methods 152
4.5.3	Process relationships for a 152

	viii	Contents
--	------	----------

4.6	Gas fraction (gas hold-up) in gassed liquids 153
4.6.1	Definition of ε 154
4.6.2	Determination of ε 154
4.6.3	Process relationships for ε 155
4.7	Gas bubble diameter d_b and its effect upon k_L 156
4.8	Gas-absorption in oil/water dispersions 161
4.9	Chemisorption 162
4.10	Bubble coalescence 165
4.11	Foam breaking 175
4.11.1	Methods and devices for foam breaking 176
4.11.2	Foam centrifuge and foam turbine 177
4.11.3	Minimum rotor tip speed 179
4.11.4	Process characteristic of the foam centrifuge and its scale-up 180
4.12	Special gas-liquid contacting techniques 183
4.12.1	Hollow stirrers 183
4.12.1.1	Application areas 183
	Suction, power and efficiency characteristics 185
	Comparison of hollow stirrer and turbine stirrer 187
	Sorption characteristics 190
4.12.2	Surface aerators 190
4.12.2.1	Centrifugal surface aerators 190
	Power characteristic 191
	Sorption characteristic 192
	Plunging water jet aerators 194
	Horizontal blade-wheel reactor 197
	Gas spargers 199
	Sintered glass or ceramics plates, perforated metal plates and static
	mixers 200
4.12.3.2	Injectors (G/L nozzles) 201
	Funnel shaped nozzle as ejectors 205
	203
5	Suspension of Solids in Liquids (S/L System) 206
5.1	Classification of the suspension condition 206
5.1.1	Complete suspension 206
5.1.2	Homogeneous suspension 207
5.2	Distribution of solids upon suspension 208
5.3	Suspension characteristics 211
5.3.1	Relevance lists and pi spaces 211
5.3.1.1	Specification according to the nature of the target quantity $n_x = 211$
5.3.1.2	Specification according to particle property d_p and/or w_{ss} 211
5.3.2	Suspension characteristics with d_p as the characteristic particle
	dimension 212
5.3.2.1	Relevance list and pi space 212
5.3.2.2	The process relationship 213
5.3.2.3	Power requirements upon suspension 216

5.3.2.4	Power requirement for the critical stirrer speed n_x 217
5.3.2.5	Scaling up in suspension according to the criterion n_x 217
5.3.3	Suspension characteristic with w_{ss} as the characteristic particle
	property 217
5.3.3.1	Determination of the particle sinking velocity in the swarm w_{ss} 217
5.3.3.2	The relevance list and the pi space 220
5.3.3.3	The process relationship 220
5.3.3.4	Final discussion from the viewpoint of the dimensional analysis 229
5.3.3.5	Establishing of scale-up criteria 230
5.3.4	Suspension characteristic with the energy dissipation number E^* 231
5.3.5	Effect of geometric and device-related factors on the suspension
	characteristic 233
5.4	Homogenization of the liquid in the S/L system 235
5.5	Mass transfer in the S/L system 236
5.5.1	Physical basis of mass transfer in the S/L system 236
5.5.2	Process characteristics of mass transfer in the S/L system 237
5.6	Suspension in the $S/L/G$ -system: hydrodynamics and power
	requirement 241
5.7	Mass transfer in the $S/L/G$ system 241
6	Dispersion in L/L Systems 244
6.1	Lowest stirrer speed for dispersion 244
6.2	Dispersion characteristics 246
6.2.1	The target quantity d_{32} 246
6.2.2	Coalescence in the L/L system 247
6.2.3	Determination method for d_{32} 247
6.2.4	Dimensional-analytical description 248
6.2.5	The process characteristics 249
6.2.6	Effect of coalescence and of φ_{v} on d_{32} 250
6.2.7	Effect of viscosity 251
6.2.8	Effect of stirring duration 252
6.3	Droplet size distribution 253
6.3.1	Fundamentals 253
6.3.2	Effect of stirrer speed 254
6.3.3	Effect of stirrer type and material system 255
6.3.4	Effect of the mixing time 262
6.4	Stirrer power for dispersion 263
6.5	Scaling up of dispersion processes 263
6.6	Mass and heat transfer upon dispersion 264
6.7	Mathematical modeling of the dispersion process 267
7	Intensification of heat transfer by stirring 272
7.1	Physical fundamentals of heat transfer 272
7.1.1	Determination of α_i 273
7.1.2	Dimensional-analytical description 273

× Contents

7.2	Heat transfer between a homogeneous liquid and a heat transfer surface 275
7.2.1	Flow range $Re = 10^2 - 10^6$ 275
7.2.2	Flow range $Re < 10^2$ 278
7.3	Generalized representation of the heat transfer characteristic by including the stirrer power per unit volume 282
7.4	Effect of the Vis-term 284
7.4.1	Taking non-Newtonian viscosity into consideration 286
7.5	Optimization of stirrers for a maximum removal of reaction heat 288
7.6	Heat transfer for G/L material systems 291
7.6.1	Dimensionally analytical description 291
7.7	Heat transfer in S/L systems 293
7.7.1	Direct heat exchange ice cubes/water 293
7.7.2	Indirect heat exchange for $\Delta \rho > 0$ 294
7.7.3	Indirect heat exchange at $\Delta \rho \approx 0$ 295
7.8	Heat transfer in L/L material systems 298
7.8.1	Direct heat exchange 298
7.8.2	Indirect heat exchange 298
7.9	Heat transfer in $G/L/S$ material systems 299
8	Mixing and stirring in pipes 300
8.1	Mixing and homogenization 300
8.1.1	Straight, smooth or rough pipe without fittings 300
8.1.2	Pipe with a jet mixer or with a Tee piece 302
8.1.2.1	Jet mixers 302
8.1.2.2	Tee pieces 304
8.1.3	Flow deflecting fittings ("motionless or static mixers") 305 Kenics mixer 307
	Sulzer mixers SMV and SMX [533] 308
	Ross-ISG mixer 309
8.2	G/L-mass transfer 309
8.2.1	Mass transfer in pipe flow 309
8.2.2	Mass transfer in pipe with static mixer 310
8.3	Heat transfer 311
8.3.1	Heat transfer in pipe flow 311
8.3.2	Heat transfer in pipe with static mixer 311
8.4	Dispersion in L/L system 314
8.4.1	Dispersion in pipe flow 314
8.4.2	Dispersion in pipe with static mixer 315
8.5	Micro-mixing and chemical reaction 316
8.5.1	Pipe reactor 317
8.5.2	Pipe reactor with a jet mixer 319
8.5.3	Pipe reactor with static mixer 320
8.6	Modeling of mixing processes in pipes 322
8.6.1	Pipe flow 322

8.6.2	Pipe with Tee mixer 323
8.6.3	Pipe with static mixer 323
8.7	Stirring in pipes and mixing columns

Literature 328

Subject Index 360