

The Molecular World

Mechanism and Synthesis

edited by Peter Taylor

CONTENTS

PART 1 CARBONYL COMPOUNDS

Jim Iley and Roger Hill

1		RODUCTION: CONTEXT	CARBONYL COMPOUNDS	15
_			E OF THE CARRONYL CROUP	17
2	TH		E OF THE CARBONYL GROUP	
	2.1	Summary of Sec	ction 1 and 2	18
3	NU	CLEOPHILIC	ATTACK AT THE CARBONYL GROUP	21
	3.1	An overview: or	rganization through mechanism	21
	3.2	Aldehydes and	ketones	26
		3.2.1 Carbon n	ucleophiles: molecule builders	26
		, ,	nucleophiles: lithium tetrahydridoaluminate luminium hydride)	29
		3.2.3 Oxygen n	ucleophiles: hydrates and acetals	31
		3.2.4 Nitrogen	nucleophiles: the formation of imines	38
		3.2.5 Reactivity	y of aldehydes and ketones: a comparison	40
		3:2.6 Summary	of Sections 3.1 and 3.2	41
	3.3	Carboxylic acid	derivatives	43
		3.3.1 Introduct	on: organization through mechanism revisited	43
		3.3.2 Oxygen r	nucleophiles: hydrolysis and esterification	43
		3.3.3 Nitrogen	nucleophiles: formation of amides	49
	·. ·!	3.3.4 Hydroger or primar	nucleophiles: a route to primary alcohols y amines	53
		3.3.5 Summary	of Section 3.3	54
4	СО	NCLUSION		56
			UMMARY OF THE REACTIONS OF ND KETONES	57
	~		UMMARY OF THE REACTIONS OF CID DERIVATIVES	58
			UMMARY OF CARBONYL ACTION TYPES	60
	LE	ARNING OUT	COMES	61
	QU	ESTIONS: AN	ISWERS AND COMMENTS	63
	AC	KNOWLEDGI	EMENTS	74

PART 2 SYNTHETIC APPLICATIONS OF ORGANOMETALLIC COMPOUNDS

Peter Morrod and Malcolm Rose

1	INT	RODUCTION	77
2	OR	GANOMAGNESIUM HALIDES	79
	2.1	Formation	79
	2.2	Reaction with aldehydes and ketones	80
	2.3	Reaction with carboxylic acid derivatives	84
	2.4	Reaction with other electrophiles	85
		2.4.1 Reaction of a Grignard reagent with nitriles— the preparation of ketones	85
		2.4.2 Reaction of a Grignard reagent with carbon dioxide— the preparation of carboxylic acids	87
		2.4.3 Reaction of a Grignard reagent with oxiranes— the preparation of alcohols	88
		2.4.4 Reaction of a Grignard reagent with acids	88
	2.5	Summary of Section 2	90
3		GANOLITHIUM AND ORGANOSODIUM MPOUNDS	93
	3.1	Introduction	93
	3.2	Formation and reaction of organolithium compounds	94
	3.3	Formation and reactions of organosodium compounds	97
5	3.4	Summary of Section 3	99
4	OR	GANOCOPPER COMPOUNDS	101
•	4.1	Formation	101
	4.2	Reactions	101
	4.3	Summary of Section 4	104
5		VIEW OF THE REACTIVITIES OF	
	OR	GANOMETALLIC REAGENTS	105
6	OR	GANOBORON COMPOUNDS	106
	6.1	Summary of Section 6	110
	EPI	LOGUE TO PART 2	110

REACTIONS USEFUL IN ORGANIC SYNTHESIS	111
LEARNING OUTCOMES	113
QUESTIONS: ANSWERS AND COMMENTS	114
FURTHER READING	119

119

APPENDIX SUMMARY OF ORGANOMETALLIC

ACKNOWLEDGEMENTS

PART 3 RADICAL REACTIONS IN ORGANIC SYNTHESIS

Adrian Dobbs

1	INT	RODUCTION	123
	1.1	Bond cleavage, bond dissociation enthalpies and the resultant species	124
	1.2	Radicals and charges	128
	1.3	Summary of Section 1	129
2	RE	ACTIONS OF RADICALS	131
3		DICAL-RADICAL COUPLING REACTIONS ADICAL COMBINATIONS)	132
	3.1	The pinacol coupling	132
		3.1.1 The McMurry reaction	135
		3.1.2 The acyloin reaction	137
	3.2	Summary of Section 3	139
4	RA	DICAL CHAIN REACTIONS	140
	4.1	Radical halogenation of alkanes	140
		4.1.1 Site selectivity	143
		4.1.2 Halogenation of alkylbenzenes	146
		4.1.3 The stereochemistry of radical substitutions	147
		4.1.4 Summary of Section 4.1	149
	4.2	Tributyltin hydride	150
		4.2.1 Intermolecular radical reactions with tributyltin hydride	152
		4.2.2 Intramolecular radical reactions with tributyltin hydride	155
•		4.2.3 Summary of Section 4.2	159
5	RAI	DICAL FRAGMENTATION REACTIONS	160
	5.1	Summary of Section 5	161
6	ΑN	APPLICATION	162
7	CO	NCLUSION	164
	LEA	ARNING OUTCOMES	165
	QUE	ESTIONS: ANSWERS AND COMMENTS	167
	FUF	RTHER READING	176
	AC	KNOWLEDGEMENTS	176

PART 4 STRATEGY AND METHODOLOGY IN ORGANIC SYNTHESIS

179

Jim Iley, Ray Jones and John Coyle

1 SYNTHESIS IN ORGANIC CHEMISTRY

1	SYN	NTHESIS IN ORGANIC CHEMISTRY	179
2	REC	QUIREMENTS FOR SYNTHESIS	181
	2.1	Summary of Section 2	186
3	PLA	ANNING A SYNTHESIS	190
	3.1	Summary of Section 3	195
4	SIM	IPLE DISCONNECTIONS: C-X BONDS	196
	4.1	Esters and amides	197
	4.2	Summary of Section 4	200
5	SIM	IPLE DISCONNECTIONS: C—C BONDS	201
	5.1	Alcohols	201
		5.1.1 Summary of Section 5.1	207
	5.2	Alkenes	208
	5.3	Alkynes	212
	5.4	Summary of Sections 5.2 and 5.3	215
	5.5	Aromatic compounds	215
		5.5.1 Summary of Section 5.5	220
	5.6	Aldehydes and ketones	221
		5.6.1 Summary of Section 5.6	226
	5.7	Carboxylic acids	227
		5.7.1 Summary of Section 5.7	231
6	CD.	-ROM ACTIVITY	233
7	CO	NTROL IN SYNTHESIS	236
	7.1	Chemoselectivity	236
	7.2	Regioselectivity	237
•	7.3	Stereoselectivity	240
	7.4	Protecting groups	242
	7.5	Strategy and control	244
	7.6	Summary of Section 7	245
		•	

8	FURTHER FACTORS AFFECTING THE CHOICE		
	OF A SYNTHETIC ROUTE	248	
	8.1 Product yield	248	
	8.2 Cost and time	250	
	8.3 Safety	251	
	8.4 Summary of Section 8	252	
9	SYNTHESIS OF A DRUG	253	
	APPENDIX FUNCTIONAL GROUP		
	INTERCONVERSIONS (FGIS)	254	
	LEARNING OUTCOMES	260	
	QUESTIONS: ANSWERS AND COMMENTS	261	
٠	ANSWERS TO EXERCISES	273	
	FURTHER READING	279	
	ACKNOWLEDGEMENTS	280	

PART 5 SYNTHESIS AND BIOSYNTHESIS: TERPENES AND STEROIDS

Jim Iley, Chris Falshaw and Richard Taylor

1	INTRODUCTION		
	1.1 Natural products	283	
	1.2 Terpenes and the isoprene rule	286	
	1.3 Summary of Section 1	289	
2	THE LABORATORY SYNTHESIS OF MONOTERPENES		
	2.1 Syntheses of linalool	291	
	2.2 Synthesis of geraniol	297	
	2.3 Summary of Section 2	298	
3	A BIOCHEMICAL INTERLUDE	299	
	3.1 Summary of Section 3	301	
4	THE SYNTHESIS OF TERPENES IN LIVING SYSTEMS	302	
	4.1 Summary of Section 4	309	
5	THE CHEMISTRY OF TERPENE BIOSYNTHESIS	310	
	5.1 Summary of Section 5	314	
6	FROM TRITERPENES TO STEROIDS	315	
	APPENDIX TERPENE BIOSYNTHESIS FROM MEVALONIC ACID	321	
	LEARNING OUTCOMES	322	
	QUESTIONS: ANSWERS AND COMMENTS	323	
	FURTHER READING	326	
	ACKNOWLEDGEMENTS		

CASE STUDY: POLYMER CHEMISTRY

Bob Hill

1	HISTORICAL INTRODUCTION	329
2	WHAT IS A POLYMER? — SOME DEFINITIONS	333
3	POLYMER FORMATIONS	338
	3.1 Step-growth polymerization	338
	3.2 Chain-growth polymerization	339
	3.3 A comparison of chain growth and step growth	340
4	POLYMER DESIGN AND DESIGNER POLYMERS	342
5	POLYACRYLAMIDE GEL	
	ELECTROPHORESIS (PAGE)	346
6	CONTACT LENSES	349
	FURTHER READING	354
	ACKNOWLEDGEMENTS	354
	INDEX	355