Battery Management Systems

Design by Modelling

by Henk Jan Bergveld, Wanda S. Kruijt and Peter H.L. Notten

Kluwer Academic Publishers

Table of contents

Lis	List of abbreviations		
Lis	reface Introduction 1.1 The energy chain 1.2 Definition of a Battery Management System 1.3 Motivation of the research described in this book 1.4 Scope of this book 1.5 References Battery Management Systems 2.1 A general Battery Management System 2.2 Battery Management System parts 2.2.1 The Power Module (PM) 2.2.2 The battery 2.2.3 The DC/DC converter 2.2.4 The load 2.2.5 The communication channel 2.3 Examples of Battery Management Systems 2.3.1 Introduction 2.3.2 Comparison of BMS in a low-end and high-end shaver 2.3.3 Comparison of BMS in two types of cellular phones 2.4 References	xv	
Se	Series preface Preface		
Pr			
1.	Introduction	1	
	1.2 Definition of a Battery Management System1.3 Motivation of the research described in this book1.4 Scope of this book	1 3 4 5 6	
2.	Battery Management Systems	9	
	 2.2 Battery Management System parts 2.2.1 The Power Module (PM) 2.2.2 The battery 2.2.3 The DC/DC converter 2.2.4 The load 2.2.5 The communication channel 2.3 Examples of Battery Management Systems 2.3.1 Introduction 2.3.2 Comparison of BMS in a low-end and high-end shaver 2.3.3 Comparison of BMS in two types of cellular phones 	9 10 10 14 18 19 19 22 22 22 22	
3.	. Basic information on batteries	31	
	 3.1 Historical overview 3.2 Battery systems 3.2.1 Definitions 3.2.2 Battery design 3.2.3 Battery characteristics 	31 33 33 35 36	

	3.3	Genera	al operational mechanism of batteries	43
		3.3.1	Introduction	43
		3.3.2	Basic thermodynamics	44
		3.3.3	Kinetic and diffusion overpotentials	45
		3.3.4	Double-layer capacitance	50
		3.3.5	Battery voltage	52
	3.4	Refere		52
4.	Ba	ttery	modelling	55
	4.1	Genera	al approach to modelling batteries	55
		4.1.1	Chemical and electrochemical potential	58
		4.1.2	Modelling chemical and electrochemical reactions	59
		4.1.3	Modelling mass transport	67
		4.1.4	Modelling thermal behaviour	82
	4.2		lation model of a rechargeable NiCd battery	86
		4.2.1	Introduction	86
		4.2.2	The nickel reaction	89
		4.2.3	The cadmium reactions	92
		4.2.4	The oxygen reactions	97
		4.2.5	Temperature dependence of the reactions	102
		4.2.6	The model	103
	4.3		llation model of a rechargeable Li-ion battery	107
		4.3.1	Introduction	107
		4.3.2	The LiCoO ₂ electrode reaction	108
		4.3.3	The LiC ₆ electrode reaction	113
		4.3.4	The electrolyte solution	117
		4.3.5	Temperature dependence of the reactions	118
		4.3.6	The model	118
	4.4	Parame	eterization of the NiCd battery model	124
		4.4.1	Introduction	124
		4.4.2	Mathematical parameter optimization	126
		4.4.3	Results and discussion	131
		4.4.4	Quality of the parameter set presented in section	
			4.4.3 under different charging conditions	138
		4.4.5	Results obtained with a modified NiCd battery	
			model and discussion	144
	4.5	Simula	tion examples	149
		4.5.1	Simulations using the NiCd model presented in	
			section 4.2	149
		4.5.2	Simulations using the Li-ion model presented in	
			section 4.3	155
		Conclu		162
	4.7	Referei	nces	165

5.	Ba	ttery	charging algorithms	169
	5.1	Chargi	ing algorithms for NiCd and NiMH batteries	169
		5.1.1	Charging modes, end-of-charge triggers and	
			charger features	169
		5.1.2	Differences between charging algorithms	
			TOT TAICE and TAINTH Butteries	175
		5.1.3	Simulation example: an alternative charging	177
			aiguitum for fried batteries	177
	5.2		ing argorithm for Dr for cutteries	184 184
		5.2.1	The basic principle	104
		5.2.2	The influence of charge voltage on the	186
			charging process	100
		5.2.3	The influence of charge current on the	187
		501	charging process Simulation example: fast charging of a	107
		5.2.4		188
	- 1		Li-ion battery	191
		Refer	lusions	192
	3.4	Reiei	ences	
6.	B	attery	y State-of-Charge indication	193
	6.	l Possi	ble State-of-Charge indication methods	193
	•	6.1.1		193
		6.1.2	Direct measurements	195
		6.1.3	Book-keeping systems	199
		6.1.4	Adaptive systems	202
		6.1.5		203
	6.3	2 Expe	erimental tests using the bq2050	204
		6.2.1	Operation of the bq2050	204
		6.2.2	Set-up of the experiments	206
		6.2.3	Results and discussion	208
		6.2.4	Conclusions of the experiments	211
	6.		ct measurements for Li-ion batteries: the EMF method	212 212
			Introduction	212
		6.3.2	EMF measurement methods	212
		6.3.3	Measured and simulated EMF curves for the	214
			CGR17500 Li-ion battery	219
		6.3.4	4 Conclusions	
	6.	.4 A sii	mple mathematical model for overpotential description	225
	6.		posed set-up for State-of-Charge system	225
		6.5.3		229
		6.5.2	2 Comparison with the bq2050 system	230
		6.5.	3 Comparison with systems found in the literature	0دے

		rimental tests with the system proposed in section 6.5	231
	6.6.1		231
	6.6.2	1	231
	6.6.3	Experimental results	232
	6.6.4	Discussion of the results	235
	6.6.5	Conclusions of the experiments	237
	6.7 Concl		238
	6.8 Refer	ences	239
_	~		
7.		ım supply strategies for Power Amplifie	
	ın cellu	lar phones	241
	7.1 Trend	ls in cellular systems	241
		fficiency control concept	245
	7.2.1	Basic information on Power Amplifiers	246
	7.2.2	Optimum supply voltage for optimum efficiency	250
	7.3 DC/D	C conversion principles	251
	7.3.1		252
	7.3.2		253
	7.3.3	Inductive voltage converters	255
	7.3.4	EMI problems involved in capacitive and	433
		inductive voltage converters	258
	7.3.5	Inductive voltage conversion for efficiency control	
		ation model derivation	258
	7.4.1	DC/DC down-converter	258
	7.4.2	Power Amplifier	260
		etical benefits of efficiency control	261
	7.5.1		262
	7.5.2	r	263
	7.5.3	Conclusions	265
		imental results obtained with a CDMA PA	266
	7.6.1	Measurement set-up	266
	7.6.2	Measurement results and discussion of part 1:	200
		no DC/DC converter	267
	7.6.3	Measurement results and discussion of part 2:	207
		with DC/DC converter	269
	7.6.4	Estimation of talk time increase in a	209
,		complete CDMA cellular phone	271
	7.7 Applie	cation of efficiency control in a GSM cellular phone	274
	7.7.1	GSM power control protocol	274
	7.7.2	Modifications in the Spark GSM phone	276
	7.7.3	Measurement results and discussion	279
	7.7.4	Conclusions of the experiments	281
	7.8 Concl		281
	7.9 Refere		282
			~02

291

About the authors

Index