
MODERN PHYSICS

a swith a difficult

ARTHUR BEISER

Contents

Preface

XII

Special Relativity

APPENDIX II: Spacetime 46

for all observers

CHAPTER

Relativity

1.2	Time Dilation 5
	A moving clock ticks more slowly than a clock at rest
1.3	Doppler Effect 10
	Why the universe is believed to be expanding
1.4	Length Contraction 15
	Faster means shorter
1.5	Twin Paradox 17
	A longer life, but it will not seem longer
1.6	Electricity and Magnetism 19
	Relativity is the bridge
1.7	Relativistic Momentum 22
	Redefining an important quantity
1.8	Mass and Energy 26
	Where $E_0 = mc^2$ comes from
1.9	Energy and Momentum 30
	How they fit together in relativity
1.10	General Relativity 33
	Cranthy to a sustainer of engertime

APPENDIX I: The Lorentz Transformation 37

All motion is relative; the speed of light in free space is the same

C	H	A	P	T	E	R		2	
---	---	---	---	---	---	---	--	---	--

—	
Partic	le Properties of Waves 52
2.1	Electromagnetic Waves 53
	Coupled electric and magnetic oscillations that move with the speed of
	light and exhibit typical wave behavior
2.2	Blackbody Radiation 57
	Only the quantum theory of light can explain its origin
2.3	Photoelectric Effect 62
	The energies of electrons liberated by light depend on the frequency
	of the light
2.4	What Is Light? 67

- Both wave and particle

 2.5 X-Rays 68

 They consist of high-energy photons
- 2.6 X-Ray Diffraction 72How x-ray wavelengths can be determined
- 2.7 Compton Effect 75
 Further confirmation of the photon model
- 2.8 Pair Production 79
 Energy into matter
- 2.9 Photons and Gravity 85

 Although they lack rest mass, photons behave as though they have gravitational mass

CHAPTER 3

Wave Properties of Particles 92

- 3.1 De Broglie Waves 93

 A moving body behaves in certain ways as though it has a wave nature
 - 3.2 Waves of What? 9:
 Waves of probability
 - 3.3 Describing a Wave 96
 A general formula for waves
 - 3.4 Phase and Group Velocities 99

 A group of waves need not have the same velocity as the waves themselves
 - 3.5 Particle Diffraction 104

 An experiment that confirms the existence of de Broglie waves

3.6	Particle in a Box 106
	Why the energy of a trapped particle is quantized
3.7	, .
	We cannot know the future because we cannot know the present
3.8	Uncertainty Principle II 113
	A particle approach gives the same result
3.9	Applying the Uncertainty Principle 114
	A useful tool, not just a negative statement
HA	PTER 4
tomi	c Structure 119
4.1	The Nuclear Atom 120
,	An atom is largely empty space
4.2	Electron Orbits 124
	The planetary model of the atom and why it fails
4.3	Atomic Spectra 127
,,,_	Each element has a characteristic line spectrum
4.4	
,-,	Electron waves in the atom
4.5	
	A photon is emitted when an electron jumps from one energy level to a
	lower level
4.6	Correspondence Principle 138
	The greater the quantum number, the closer quantum physics approaches
	classical physics
4.7	Nuclear Motion 140
	The nuclear mass affects the wavelengths of spectral lines
4.8	Atomic Excitation 142
	How atoms absorb and emit energy
4.9	The Laser 145
	How to produce light waves all in step
PPEN	NDIX: Rutherford Scattering 152
HA:	PTER 5
	tum Mechanics 160
5.1	
	American incommittee for

Classical mechanics is an approximation of quantum mechanics

2.6	Denti-la in a Dan 106
3.0	Particle in a Box 106
2.7	Why the energy of a trapped particle is quantized
3.7	Uncertainty Principle I 108
•	We cannot know the future because we cannot know the present
3.8	Uncertainty Principle II 113
	A particle approach gives the same result
3.9	Applying the Uncertainty Principle 114
	A useful tool, not just a negative statement
HA	PTER 4
	ic Structure 119
	The Nuclear Atom 120
1.1	An atom is largely empty space
4.2	
1.2	The planetary model of the atom and why it fails
4.3	
7.5	Each element has a characteristic line spectrum
4.4	
,,,	Electron waves in the atom
4.5	Energy Levels and Spectra 133
	A photon is emitted when an electron jumps from one energy level to a
	lower level
4.6	Correspondence Principle 138
	The greater the quantum number, the closer quantum physics approaches
	classical physics
4.7	Nuclear Motion 140
	The nuclear mass affects the wavelengths of spectral lines
4.8	Atomic Excitation 142
	How atoms absorb and emit energy
4.9	The Laser 145
	How to produce light waves all in step
PPE	NDIX: Rutherford Scattering 152
` LI A	DTED 5
, П А	PTER 5

Quantum Mechanics 160

5.1 Quantum Mechanics 161
Classical mechanics is an approximation of quantum mechanics

	It can have a variety of solutions, including complex ones
5.3	Schrödinger's Equation: Time-Dependent Form 166
	A basic physical principle that cannot be derived from anything else
5.4	Linearity and Superposition 169
	Wave functions add, not probabilities
5.5	Expectation Values 170
	How to extract information from a wave function
5.6	Operators 172
	Another way to find expectation values
5.7	Schrödinger's Equation: Steady-State Form 174
	Eigenvalues and eigenfunctions
5.8	Particle in a Box 177
	How boundary conditions and normalization determine wave functions
5.9	Finite Potential Well 183
	The wave function penetrates the walls, which lowers the energy levels
5.10	Tunnel Effect 184
	A particle without the energy to pass over a potential barrier may still tunnel through it
5.11	Harmonic Oscillator 187
	Its energy levels are evenly spaced
APPE	NDIX: The Tunnel Effect 193
	PTER 6
Quan	tum Theory of the Hydrogen Atom 200
6.1	Schrödinger's Equation for the Hydrogen Atom 201
	Symmetry suggests spherical polar coordinates
6.2	Separation of Variables 203

A differential equation for each variable

Three dimensions, three quantum numbers

Quantization of angular-momentum magnitude

Quantization of angular-momentum direction

205

207

210

208

Quantum Numbers

Quantization of energy

Principal Quantum Number

Orbital Quantum Number

Magnetic Quantum Number

6.3

6.4

6.5

6.6

163

5.2 The Wave Equation

6.7	Electron Probability Density 212
	No definite orbits
6.8	Radiative Transitions 218
	What happens when an electron goes from one state to another
6.9	Selection Rules 220
	Some transitions are more likely to occur than others
6.10	Zeeman Effect 223
	How atoms interact with a magnetic field
CHA	PTER 7
Many	-Electron Atoms 228
7.1	Electron Spin 229
	Round and round it goes forever
7.2	Exclusion Principle 231
	A different set of quantum numbers for each electron in an atom
7.3	Symmetric and Antisymmetric Wave Functions 233
	Fermions and bosons
7.4	Periodic Table 235
	Organizing the elements
7.5	Atomic Structures 238
	Shells and subshells of electrons
7.6	Explaining the Periodic Table 240
	How an atom's electron structure determines its chemical behavior
7.7	Spin-Orbit Coupling 247
	Angular momenta linked magnetically
7.8	Total Angular Momentum 249
	Both magnitude and direction are quantized
7.9	X-Ray Spectra 254
	They arise from transitions to inner shells
APPE	NDIX: Atomic Spectra 259
CHA	APTER 8
Mole	cules 266
8.1	The Molecular Bond 267

Electric forces hold atoms together to form molecules

8.2	Electron Sharing 269
	The mechanism of the covalent bond
8.3	The H ₂ ⁺ Molecular Ion 270
	Bonding requires a symmetric wave function
8.4	The Hydrogen Molecule 274
	The spins of the electrons must be antiparallel
8.5	Complex Molecules 276
	Their geometry depends on the wave functions of the outer electrons of their atoms
8.6	Rotational Energy Levels 282
	Molecular rotational spectra are in the microwave region
8.7	Vibrational Energy Levels 285
	A molecule may have many different modes of vibration
8.8	Electronic Spectra of Molecules 291
	How fluorescence and phsophorescence occur
CHA	PTER 9
Statis	tical Mechanics 296
9.1	Statistical Distributions 297
	Three different kinds
9.2	Maxwell-Boltzmann Statistics 298
	Classical particles such as gas molecules obey them
9.3	Molecular Energies in an Ideal Gas 300
	They vary about an average of $\frac{3}{2}kT$
9.4	Quantum Statistics 305
	Bosons and fermions have different distribution functions
9.5	Rayleigh-Jeans Formula 311
	The classical approach to blackbody radiation
9.6	Planck Radiation Law 313
	How a photon gas behaves
9.7	Einstein's Approach 318
	Introducing stimulated emission
9.8	Specific Heats of Solids 320
	Classical physics fails again
9.9	Free Electrons in a Metal 323
	No more than one electron per quantum state

9.10	Electron-Energy Distribution 325
	Why the electrons in a metal do not contribute to its specific heat except at very high and very low temperatures
9.11	Dying Stars 327
	What happens when a star runs out of fuel
HA	PTER 10
he Si	olid State 335
	Crystalline and Amorphous Solids 336
	Long-range and short-range order
10.2	Ionic Crystals 338
	The attraction of opposites can produce a stable union
10.3	Covalent Crystals 342
	Shared electrons lead to the strongest bonds
10.4	Van der Waals Bond 345
	Weak but everywhere
10.5	Metallic Bond 348
	A gas of free electrons is responsible for the characteristic properties of a metal
10.6	Band Theory of Solids 354
	The energy band structure of a solid determines whether it is a conductor, an insulator, or a semiconductor
10.7	Semiconductor Devices 361
	The properties of the p-n junction are responsible for the microelectronics industry
10.8	Energy Bands: Alternative Analysis 369
	How the periodicity of a crystal lattice leads to allowed and forbidden bands
10.9	Superconductivity 376
	No resistance at all, but only at very low temperatures (so far)
10.10	Bound Electron Pairs 381
	The key to superconductivity
CHA	APTER 11
Vucle	ear Structure 387
11.1	Nuclear Composition 388
	Atomic nuclei of the same element have the same numbers of protons

but can have different numbers of neutrons

11.2	Some Nuclear Properties 392
	Small in size, a nucleus may have angular momentum and a magnetic moment
11.3	Stable Nuclei 396
	Why some combinations of neutrons and protons are more stable than others
11.4	Binding Energy 399
	The missing energy that keeps a nucleus together
11.5	Liquid-Drop Model 403
	A simple explanation for the binding-energy curve
11.6	Shell Model 408
	Magic numbers in the nucleus
11.7	Meson Theory of Nuclear Forces 412
	Particle exchange can produce either attraction or repulsion
CHA	PTER 12
Nucle	ar Transformations 418
12.1	Radioactive Decay 419
	Five kinds
12.2	Half-Life 424
	Less and less, but always some left
12.3	Radioactive Series 430
	Four decay sequences that each end in a stable daughter
12.4	Alpha Decay 432
	Impossible in classical physics, it nevertheless occurs
12.5	Beta Decay 436
	Why the neutrino should exist and how it was discovered
12.6	Gamma Decay 440
	Like an excited atom, an excited nucleus can emit a photon
12.7	Cross Section 441
	A measure of the likelihood of a particular interaction
12.8	Nuclear Reactions 446
	In many cases, a compound nucleus is formed first
12.9	Nuclear Fission 450
	Divide and conquer
12.10	Nuclear Reactors 454
	$E_0 = mc^2 + \$\$\$$

12.11 Nuclear Fusion in Stars 460
How the sun and stars get their energy
12.12 Fusion Reactors 463
The energy source of the future?
APPENDIX: Theory of Alpha Decay 468
CHAPTER 13
Elementary Particles 474
13.1 Interaction's and Particles 475
Which affects which
13.2 Leptons 477
Three pairs of truly elementary particles
13.3 Hadrons 481
Particles subject to the strong interaction
13.4 Elementary Particle Quantum Numbers 485
Finding order in apparent chaos
13.5 Quarks 489
The ultimate constituents of hadrons
13.6 Field Bosons 494
Carriers of the interactions
13.7 The Standard Model and Beyond 496
Putting it all together
13.8 History of the Universe 498
It began with a bang
13.9 The Future 501
"In my beginning is my end." (T. S. Eliot, Four Quartet
APPENDIX
Atomic Masses 507
Answers to Odd-Numbered Exercises 516

For Further Study 525

Credits 529 Index 531