
RSC PAPERBACKS

green chemistry an introductory text

MIKE LANCASTER

Contents

Abbreviations Used in Text	xvii
Chapter 1	
Principles and Concepts of Green Chemistry	1
1.1 Introduction	1
1.2 Sustainable Development and Green Chemistry	2
1.3 Atom Economy	6
1.4 Atom Economic Reactions	8
1.4.1 Rearrangement Reactions	8
1.4.2 Addition Reactions	10
1.5 Atom Un-economic Reactions	13
1.5.1 Substitution Reactions	13
1.5.2 Elimination Reactions	14
1.5.3 Wittig Reactions	15
1.6 Reducing Toxicity	16
1.6.1 Measuring Toxicity	18
Review Questions	20
Further Reading	20
Chapter 2	
Waste: Production, Problems and Prevention	21
2.1 Introduction	21
2.2 Some Problems Caused by Waste	22
2.3 Sources of Waste from the Chemical Industry	24
2.4 The Cost of Waste	28
2.5 Waste Minimization Techniques	31
2.5.1 The Team Approach to Waste Minimization	32
2.5.2 Process Design for Waste Minimization	34
2.5.3 Minimizing Waste from Existing Processes	37
2.6 On-site Waste Treatment	38

2.6.1 Physical Treatment	40
2.6.2 Chemical Treatment	41
2.6.3 Biotreatment Plants	43
2.7 Design for Degradation	45
2.7.1 Degradation and Surfactants	46
2.7.2 DDT	47
2.7.3 Polymers	47
2.7.4 Some Rules for Degradation	49
2.8 Polymer Recycling	49
2.8.1 Separation and Sorting	50
2.8.2 Incineration	52
2.8.3 Mechanical Recycling	53
2.8.4 Chemical Recycling to Monomers	55
Review Questions	57
Further Reading	58
Chapter 3	
Measuring and Controlling Environmental Performance	59
3.1 The Importance of Measurement	59
3.1.1 Lactic Acid Production	60
3.1.2 Safer Gasoline	62
3.2 Introduction to Life Cycle Assessment	64
3.3 Green Process Metrics	69
3.4 Environmental Management Systems	73
3.4.1 ISO 14001	73
3.4.2 The European Eco-management and Audit Scheme	77
3.5 Eco-labels	78
3.6 Legislation	80
3.6.1 Integrated Pollution Prevention and Control	80
Review Questions	82
Further Reading	83
Chapter 4	
Catalysis and Green Chemistry	84
4.1 Introduction to Catalysis	84
4.1.1 Comparison of Catalyst Types	86
4.2 Heterogeneous Catalysts	88
4.2.1 Basics of Heterogeneous Catalysis	88
4.2.2 Zeolites and the Bulk Chemical Industry	90
4.2.3 Heterogeneous Catalysis in the Fine Chemical and	,,,
Pharmaceutical Industries	98
4.2.4 Catalytic Converters	107

Contents	xiii
Contents	X111

	100
4.3 Homogeneous Catalysis	108
4.3.1 Transition Metal Catalysts with Phosphine Ligands	109 113
4.3.2 Greener Lewis Acids	113
4.3.3 Asymmetric Catalysis	119
4.4 Phase Transfer Catalysis	121
4.4.1 Hazard Reduction 4.4.2 C-C Bond Formation	121
4.4.2 C—C Bond Formation 4.4.3 Oxidation Using Hydrogen Peroxide	122
4.5 Biocatalysis	124
4.6 Photocatalysis-	127
4.7 Conclusion	128
Review Questions	128
Further Reading	129
Chanton 5	
Chapter 5 Organic Solvents: Environmentally Benign Solutions	130
5.1 Organic Solvents and Volatile Organic Compounds	130
5.2 Solvent-free Systems	132
5.3 Supercritical Fluids	135
5.3.1 Supercritical Carbon Dioxide	137
5.3.2 Supercritical Water	147
5.4 Water as a Reaction Solvent	149
5.4.1 Water-based Coatings	154
5.5 Ionic Liquids	154
5.5.1 Ionic Liquids as Catalysts	156
5.5.2 Ionic Liquids as Solvents	158
5.6 Fluorous Biphase Solvents	161
5.7 Conclusion	163
Review Questions	164
Further Reading	164
Chapter 6	4.2.2
Renewable Resources	166
6.1 Biomass as a Renewable Resource	166
6.2 Energy	167 167
6.2.1 Fossil Fuels	170
6.2.2 Energy from Biomass	175
6.2.3 Solar Power	173
6.2.4 Other Forms of Renewable Energy	178
6.2.5 Fuel Cells6.3 Chemicals from Renewable Feedstocks	184
	185
6.3.1 Chemicals from Fatty Acids	105

xiv Contents

	6.3.2 Polymers from Renewable Resources	194
	6.3.3 Some Other Chemicals from Natural Resources	200
6.4	Alternative Economies	204
	6.4.1 The Syngas Economy	205
	6.4.2 The Biorefinery	207
6.5	Conclusion	207
Re	view Questions	207
Fu	rther Reading	208
Chap		
Emer	rging Greener Technologies and Alternative Energy Sources	210
7.1	Design for Energy Efficiency	210
7.2	Photochemical Reactions	213
	7.2.1 Advantages of and Challenges Faced by Photochemical Processes	214
	7.2.2 Examples of Photochemical Reactions	214
73	Chemistry Using Microwaves	220
,	7.3.1 Microwave Heating	220
	7.3.2 Microwave-assisted Reactions	220
7.4	Sonochemistry	225
	7.4.1 Sonochemistry and Green Chemistry	227
7.5	Electrochemical Synthesis	228
	7.5.1 Examples of Electrochemical Synthesis	229
7.6	Conclusion	232
	view Questions	233
	ther Reading	233
Chapi	ter 8	
	ning Greener Processes	235
8.1	Conventional Reactors	235
	8.1.1 Batch Reactors	235
	8.1.2 Continuous Reactors	238
8.2	Inherently Safer Design	241
	8.2.1 Minimization	242
	8.2.2 Simplification	243
	8.2.3 Substitution	244
	8.2.4 Moderation	245
	8.2.5 Limitation	245
8.3	Process Intensification	247
	8.3.1 Some PI Equipment	249
	8.3.2 Examples of Intensified Processes	252
8.4	In-process Monitoring	255

Contents	XV
ontents	7 A

8.4.1 Near-infrared Spectroscopy	257
Review Questions	258
Further Reading	258
Chapter 9	
Industrial Case Studies	260
9.1 A Brighter Shade of Green	260
9.2 Greening of Acetic Acid Manufacture	262
9.3 EPDM Rubbers	266
9.4 Vitamin C	269
9.5 Leather Manufacture	271
9.5.1 Tanning	273
9.5.2 Fatliquoring	276
9.6 Dyeing to be Green	276
9.6.1 Some Manufacturing and Products Improvements	277
9.6.2 Dye Application	280
9.7 Polyethene	281
9.7.1 Radical Process	281
9.7.2 Ziegler-Natta Catalysis	282
9.7.3 Metallocene Catalysis	283
9.8 Eco-friendly Pesticides	285
9.8.1 Insecticides	286
Review Questions	288
References	289
Chapter 10	
The Future's Green: An Integrated Approach to a Greener Chemical Industry	29
10.1 Society and Sustainability	29
10.2 Barriers and Drivers	29
10.3 The Role of Legislation	29:
10.3.1 EU White Paper on Chemicals Policy	29
10.4 Green Chemical Supply Strategies	29
10.5 Conclusion	29
Review Questions	30
Further Reading	30
rurmer reading	