

MECHANICAL DESIGN An Integrated Approach

ANSEL C. UGURAL

McGRAW-HILL

Contents

PREFACE XV	2.7 Temperature and Stress-Strain
ABBREVIATIONS XIX	Properties 51
SYMBOLS	2.8 Moduli of Resilience and Toughness 53
ROMAN LETTERS XX	2.9 Dynamic and Thermal Effects:
GREEK LETTERS XXII	Brittle-Ductile Transition 55
	2.10 Hardness 57
PART 1	2.11 Processes to Improve Hardness and the
	Strength of Metals 59
Fundamentals 2	2.12 General Properties of Metals 61
	2.13 General Properties of Nonmetals 65
Chapter 1	References 68
Introduction to Design 3	Problems 68
1.1 Scope of Treatment 4	Chapter 3
1.2 Engineering Design 4	•
1.3 The Design Process 5	Stress and Strain 7I
1.4 Design Analysis 8	3.1 Introduction 72
1.5 Problem Formulation and Computation 9	3.2 Stresses in Axially Loaded Members 72
1.6 Factor of Safety and Design Codes 11	3.3 Direct Shear and Bearing Stresses 75
1.7 Units and Conversion 14	3.4 Thin-Walled Pressure Vessels 77
1.8 Load Classification and Equilibrium 15	3.5 Stress in Members in Torsion 79
1.9 Load Analysis 17	3.6 Shear and Moment in Beams 84
1.10 Case Studies 19	3.7 Stresses in Beams 87
1.11 Work and Energy 23	3.8 Design of Beams 94
1.12 Power 25	3.9 Plane Stress 102
1.13 Stress Components 27	3.10 Combined Stresses 108
1.14 Normal and Shear Strains 29	3.11 Plane Strain 114
References 31	3.12 Stress Concentration Factors 117
Problems 32	3.13 Importance of Stress Concentration Factors
a.	in Design 118
Chapter 2	3.14 Contact Stress Distributions 120
Materials 38	*3.15 Maximum Stress in General Contact 125
2.1 Introduction 39	3.16 Three-Dimensional Stress 128
2.2 Material Property Definitions 40	*3.17 Variation of Stress Throughout
2.3 Static Strength 41	a Member 134
2.4 Hooke's Law and Modulus of Elasticity 45	3.18 Three-Dimensional Strain 136
2.5 Generalized Hooke's Law 47	References 137
2.6 Thermal Stress-Strain Relations 51	Problems 138

Chapter 4	6.7 Design of Columns Under an Eccentric
DEFLECTION AND IMPACT 151	Load 249
4.1 Introduction 152	6.8 Beam-Columns 252
4.2 Deflection of Axially Loaded Members 152	*6.9 Energy Methods Applied to Buckling 255
4.3 Angle of Twist of Bars 156	*6.10 Buckling of Rectangular Plates 257
	References 259
, , , , , , , , , , , , , , , , , , , ,	Problems 259
- L L	
4.6 Beam Deflection by the Moment-Area	Chapter 7
Method 166	FAILURE CRITERIA
4.7 Impact Loading 172	AND RELIABILITY 265
4.8 Longitudinal and Bending Impact 172	
4.9 Torsional Impact 177	7.1 Introduction 266
4.10 Bending of Thin Plates 179	7.2 Introduction to Fracture Mechanics 266
4.11 Deflection of Plates by Integration 183	7.3 Stress-Intensity Factors 267
References 185	7.4 Fracture Toughness 268
Problems 186	7.5 Yield and Fracture Criteria 273
Chapter 5	7.6 Maximum Shear Stress Theory 275
	7.7 Maximum Distortion Energy Theory 277
Energy Methods in Design 195	7.8 Octahedral Shear Stress Theory 279
5.1 Introduction 196	7.9 Comparison of the Yielding Theories 282
5.2 Strain Energy 196	7.10 Maximum Principal Stress Theory 283
5.3 Components of Strain Energy 198	7.11 Mohr's Theory 284
5.4 Strain Energy in Common Members 199	7.12 The Coulomb-Mohr Theory 285
5.5 The Work-Energy Method 203	7.13 Reliability 288
5.6 Castigliano's Theorem 204	7.14 Normal Distributions 289
	7.15 The Reliability Method and Margin
· · · · · · · · · · · · · · · · · · ·	of Safety 291
<i>Q</i> ,	References 294
5	Problems 295
Methods 217	11001CH13 293
5.10 The Rayleigh-Ritz Method 220	Chapter 8
References 222	•
Problems 223	FATIGUE 301
Chapter 6	8.1 Introduction 302
•	8.2 The Nature of Fatigue Failures 302
BUCKLING DESIGN OF MEMBERS 232	8.3 Fatigue Tests 304
5.1 Introduction 233	8.4 The S-N Diagrams 305
5.2 Buckling of Columns 233	8.5 Estimating the Endurance Limit
5.3 Critical Stress in a Column 236	and Fatigue Strength 308
5.4 Initially Curved Columns 242	8.6 Modified Endurance Limit 309
5.5 Eccentric Loads and	8.7 Endurance Limit Reduction Factors 310
the Secant Formula 244	8.8 Fluctuating Stresses 316
5.6 Design of Columns Under a Centric	8.9 Theories of Fatigue Failure 317
Load 247	
Loud 27/	8.10 Comparison of the Fatigue Criteria 319

5.11	Design for Simple Fluctuating Loads 320	10.6	Hydrodynamic Lubrication Theory 388
3.12	Design for Combined Fluctuating	10.7	Design of Journal Bearings 391
	Loads 327	10.8	Methods of Lubrication 397
3.13	Prediction of Cumulative Fatigue	10.9	Heat Balance of Journal
	Damage 329		Bearings 399
3.14	Fracture Mechanics Approach	10.10	Materials for Journal Bearings 400
	to Fatigue 330		Rolling-Element Bearings 401
3.15	Surface Fatigue Failure: Wear 333		<u> </u>
Referen		10.11	Types and Dimensions of Rolling
	is 336	10.12	Bearings 402
		10.12	Rolling Bearing Life 408
ART		10.13	Equivalent Radial Load 409
		10.14	Selection of Rolling Bearings 411
APPLIC	CATIONS 342	10.15	Materials and Lubricants of Rolling
		40.46	Bearings 416
Chap	ter 9	10.16	Mounting and Closure of Rolling
SHAFT	S AND ASSOCIATED PARTS 343	- 4	Bearings 417
			nces 418
9.1	Introduction 344	Probler	ns 419
9.2	Materials Used for Shafting 345		
9.3	Design of Shafts in Steady Torsion 345	_	ter 11
9.4	Combined Static Loadings on Shafts 347	Spur (Gears 423
9.5	Design of Shafts for Fluctuating and Shock	11.1	Introduction 424
	Loads 348	11.1	Geometry and Nomenclature 425
9.6	Interference Fits 354	11.2	Fundamentals 428
9.7	Critical Speed of Shafts 355	11.3	Gear Tooth Action and Systems
9.8	Mounting Parts 358	11.4	of Gearing 430
9.9	Stresses in Keys 361	11.5	Contact Ratio and Interference 433
9.10	Splines 362	11.5	Gear Trains 433
9.11	Couplings 364	11.6	
9.12	Universal Joints 366	11.7	Transmitted Load 436
Referer		11.8	The Bending Strength of a Gear Tooth:
Problen	ns 370	11.0	The Lewis Formula 440
د د د	10	11.9	Design for the Bending Strength
•	ter 10	11 10	of a Gear Tooth: The AGMA Method 445
BEARI	ngs and Lubrication 376	11.10	The Wear Strength of a Gear Tooth:
10.1	Introduction 377	11 11	The Buckingham Formula 452
	Lubrication and Journal Bearings 377	11.11	Design for the Wear Strength of a Gear
	-	11.10	Tooth: The AGMA Method 455
10.2	Lubricants 377	11.12	Materials for Gears 459
10.3	Types of Journal Bearings	11.13	Gear Manufacturing 460
	and Lubrication 378	Refere	
10.4	Lubricant Viscosity 382	Proble	ms 466
10.5	Petroff's Bearing Equation 386		

•	ter 12		oter 14
MELIC	AL, BEVEL, AND WORM GEARS 472	SPRIN	GS 559
12.1	Introduction 473	14.1	Introduction 560
12.2	Helical Gears 473	14.2	Torsion Bars 561
12.3	Helical Gear Geometry 475	14.3	Helical Tension and Compression
12.4	Helical Gear Tooth Loads 478		Springs 562
12.5	Helical Gear-Tooth Bending and Wear	14.4	Spring Materials 566
	Strengths 479	14.5	Helical Compression Springs 570
12.6	Bevel Gears 485	14.6	Buckling of Helical Compression
12.7	Tooth Loads of Straight Bevel Gears 488		Springs 572
12.8	Bevel Gear-Tooth Bending and Wear	14.7	Fatigue of Springs 574
	Strengths 490	14.8	Design of Helical Compression Springs for
12.9	Worm Gearsets 492		Fatigue Loading 575
12.10	Worm Gear Bending and Wear	14.9	Helical Extension Springs 580
	Strengths 496	14.10	Torsion Springs 582
12.11	Thermal Capacity of Worm	14.11	Leaf Springs 585
	Gearsets 498	14.12	Miscellaneous Springs 588
Referen	ices 502		nces 592
Problen			ms 593
Chap	ter 13	Chap	ter 15
BELTS,	CHAINS, CLUTCHES,	Powe	r Screws, Fasteners,
	RAKES 507		Connections 598
13.1	Introduction 508	15.1	Introduction 599
Part A	Flexible Elements 508	15.2	Standard Thread Forms 600
13.2	Belts 509	15.3	Mechanics of Power Screws 604
13.3	Belt Drives 512	15.4	Overhauling and Efficiency of Power
13.4	Belt Tension Relationships 516		Screws 608
13.5	Design of V-Belt Drives 518	15.5	Ball Screws 610
13.6	Chain Drives 524	15.6	Threaded Fastener Types 612
13.7	Common Chain Types 525	15.7	Stresses in Screws 614
		15.8	Bolt Tightening and Preload 617
Part B	High-Friction Devices 531	15.9	Tension Joints Under Static
13.8	Materials for Brakes and Clutches 531		Loading 619
13.9	Internal Expanding Drum Clutches	15.10	Gasketed Joints 621
	and Brakes 533	15.11	Determining the Joint Stiffness
13.10	Disk Clutches and Brakes 534		Constants 622
13.11	Cone Clutches and Brakes 539	15.12	Tension Joints Under Dynamic
13.12	Band Brakes 541		Loading 625
13.13	Short-Shoe Drum Brakes 543	15.13	Riveted and Bolted Joints Loaded
13.14	Long-Shoe Drum Brakes 546		in Shear 629
13.15	Energy Absorption and Cooling 551	15.14	Shear of Rivets or Bolts Due to Eccentric
	ces 553		Loading 634
Problem	ns 554	15.15	Welding 637

CONTENTS XIII

15.16	Welded Joints Subjected to Eccentric Loading 641	17.5	Properties of Two-Dimensional Elements 730
15.17	Brazing and Soldering 646	17.6	Triangular Element 733
15.18	Adhesive Bonding 647	17.7	Plane Stress Case Studies 736
References	649	17.8	Axisymmetric Element 742
	650	References	745
			746
Chapte			
	ETRIC PROBLEMS		
IN DESIG	n 659	Append	
16.1	Introduction 660		ROPERTIES OF SHAPES,
		and Bean	M DEFLECTIONS 753
16.2	Basic Relations 660	Table A 1	Conversion factors: SI units to II S
16.3	Thick-Walled Cylinders Under	Table A.1	Conversion factors: SI units to U.S.
	Pressure 661	T 11 4 0	customary units 754
16.4	Compound Cylinders: Press or Shrink	Table A.2	SI prefixes 754
	Fits 666	Table A.3	Properties of areas 755
16.5	Disk Flywheels 669	Table A.4	Properties of some steel pipe and
16.6	Thermal Stresses in Cylinders 675		tubing 756
*16.7	Fully Plastic Thick-Walled	Table A.5	Properties of solids 757
	Cylinders 679	Table A.6	Properties of rolled-steel (W) shapes,
16.8	Stresses in Curved Beams 682		wide-flange sections 758
16.9	Axisymmetrically Loaded Circular	Table A.7	Properties of rolled-steel (S) shapes,
	Plates 689		American standard I beams 760
*16.10	Thin Shells of Revolution 692	Table A.8	Properties of rolled-steel (L) shapes,
16.11	Special Cases of Shells of		angles with equal legs 762
	Revolution 694	Table A.9	Deflections and slopes of beams 764
16.12	Pressure Vessels and Piping 699	Table A.10	
16.13	The ASME Code for Conventional		indeterminate beams 766
10.15	Pressure Vessels 702		
16.14	Filament-Wound Pressure Vessels 703		
16.15	Buckling of Cylindrical and Spherical	Append	lix B
10.13	Shelis 705	• -	L Properties 767
Dafamamaaa		MATERIA	LI ROPERTIES 707
References		Table B.1	Average properties of common
Problems	707		engineering materials 768
Chapte	r 17	Table B.2	Typical mechanical properties of gray
•			cast iron 770
FINITE E	LEMENT ANALYSIS IN DESIGN 714	Table B.3	Mechanical properties of some
17.1	Introduction 715		hot-rolled (HR) and cold-drawn (CD)
17.2	Stiffness Matrix for Axial		steels 770
	Elements 716	Table B.4	Mechanical properties of selected
17.3	Formulation of the Finite Element	IUOIO DT	heat-treated steels 771
11.0	Method and Its Application to	Table B.5	Mechanical properties of some
	- -	Table D.J	
17 4			annealed (An.) and cold-worked (CW)
17.4	Beam and Frame Elements 724		wrought stainless steels 772

~	 		
CO	 V 1	377	

bending 777

Table B.6	Mechanical properties of some	Figure C.7	Theoretical stress-concentration factor
Table B.7	aluminium alloys 772 Mechanical properties of some copper		K_t for a shaft with a shoulder fillet in axial tension 777
Table B. /	alloys 773	Figure C.8	
Table B.8	Selected mechanical properties of some common plastics 773	C	K_t for a shaft with a shoulder fillet in torsion 778
	F.	Figure C.9	Theoretical stress-concentration factor
Append	lix C		K_t for a shaft with a shoulder fillet in
STRESS C	ONCENTRATION FACTORS 774		bending 778
Figure C.1	Theoretical stress-concentration factor K_t for a filleted bar in axial tension 775	Figure C.10	Theoretical stress-concentration factor K_t for a grooved shaft in axial tension 779
Figure C.2		_	Theoretical stress-concentration factor K_t for a grooved shaft in torsion 779
Figure C.3		Figure C.13 Theoretical stress-concentrate	K_i for a grooved shaft in bending 780 Theoretical stress-concentration factor
Figure C.4			K _t for a shaft with a transverse hole in axial tension, bending, and torsion 780
Figure C.5	•	Append	lix D
-	K _i : A—for a flat bar loaded in tension by a pin through the transverse hole; B—for a flat bar with a transverse hole in axial	SOLUTION CUBIC EC	N OF THE STRESS QUATION 78 I
	tension 777	Answers	TO SELECTED PROBLEMS 783
Figure C.6	Theoretical-stress concentration factor K for a flat har with a transverse hole in		

Index 791