## GENETICS, EVOLUTION AND BIOLOGICAL CONTROL

Edited by L.E. Ehler, R. Sforza and T. Matellle





## **Contents**

| ontributors                                                         |      |
|---------------------------------------------------------------------|------|
| Preface                                                             | xiii |
| 1. Genetic Structure of Natural Plant and Pathogen                  |      |
| Populations                                                         | 1    |
| J.J. Burdon and P.H. Thrall                                         |      |
| Introduction                                                        | 1    |
| Natural variation in host-pathogen associations                     | 2    |
| Disease resistance in plant populations in their native range       | 3    |
| Variation in space: host-pathogen interactions as metapopulation    |      |
| associations                                                        | 5    |
| Host and pathogen variation in new environments                     | 7    |
| What is the resistance structure of invasive host populations?      | 7    |
| How important is continuing natural selection for the maintenance   |      |
| of resistance in introduced populations?                            | . 9  |
| How rapidly will resistance respond to the re-application of        |      |
| pathogen selective pressures?                                       | 11   |
| Improving biological control strategies                             | 12   |
| How do host and pathogen life-history features and the environment  |      |
| interact to determine the genetic basis of resistance?              | 12   |
| What are the selective consequences of rapid versus slower declines |      |
| in population size?                                                 | 13   |
| Conclusions                                                         | 14   |
| - Acknowledgement                                                   | 15   |
| References                                                          | 15   |
|                                                                     |      |

vi Contents

| 2. | Measuring Genetic Variation in Natural Enemies Used for           |    |
|----|-------------------------------------------------------------------|----|
|    | Biological Control: Why and How?                                  | 19 |
|    | E. Wajnberg                                                       |    |
|    | Introduction                                                      | 19 |
|    | Why measure intrapopulation genetic variation in natural enemies? | 20 |
|    | Methods for measuring intrapopulation genetic variation           | 22 |
|    | Parent-offspring regression                                       | 24 |
|    | Sib analysis                                                      | 24 |
|    | Family analysis                                                   | 24 |
|    | Breeding selection                                                | 25 |
|    | Intrapopulation genetic variation in insect parasitoids           | 26 |
|    | What characters should be studied?                                | 29 |
|    | Conclusion                                                        | 31 |
|    | Acknowledgements                                                  | 31 |
|    | References                                                        | 31 |
| 3. | Molecular Systematics, Chalcidoidea and Biological                |    |
|    | Control                                                           | 39 |
|    | J. Heraty                                                         |    |
|    | Introduction                                                      | 39 |
|    | Genes of interest                                                 | 42 |
|    | Genetic divergence                                                | 44 |
|    | Identification                                                    | 49 |
|    | Phylogenetics and their applications                              | 52 |
|    | Relationships of Chalcidoidea                                     | 52 |
|    | Relationships within Chalcidoidea                                 | 53 |
|    | Eucharitidae: competing morphological and molecular trees         | 54 |
|    | Encarsia: unchallenged trees and the interpretation of change     | 56 |
|    | Phylogeography and invasive agents                                | 59 |
|    | Cospeciation                                                      | 59 |
|    | Conclusion                                                        | 63 |
|    | Acknowledgements                                                  | 65 |
|    | References                                                        | 65 |
| 4. | Genetic Markers in Rust Fungi and their Application to            | 73 |
|    | Weed Biocontrol                                                   |    |
|    | K.J. Evans and D.R. Gomez                                         |    |
|    | Introduction                                                      | 73 |
|    | Rust fungi as biocontrol agents of weeds                          | 74 |
|    | Genetic markers in rust fungi                                     | 75 |
|    | Pathotyping -                                                     | 7€ |
|    | Selecting molecular markers for population-genetic studies        | 76 |
|    | Relative utility of some common DNA markers                       | 77 |
|    | Emerging technologies                                             | 78 |
|    | Application of molecular markers in weed biocontrol               | 78 |

|    | Investigating relationships between weed diversity and pathogen                    |     |
|----|------------------------------------------------------------------------------------|-----|
|    | variation                                                                          | 78  |
|    | The skeleton rust story                                                            | 79  |
|    | The blackberry rust story                                                          | 80  |
|    | Identifying the released pathogen with certainty                                   | 83  |
|    | The musk thistle rust story                                                        | 83  |
|    | Identifying and monitoring the fate of the released pathogen strain with certainty | 84  |
|    | Population genetics of rust fungi in relation to strain selection                  | 85  |
|    | Locating centres of diversity and evolutionary new associations                    | 88  |
|    | Conclusions                                                                        | 90  |
|    | Acknowledgements                                                                   | 91  |
|    | References                                                                         | 91  |
| 5. | Tracing the Origin of Pests and Natural Enemies: Genetic                           |     |
|    | and Statistical Approaches                                                         | 97  |
|    | G.K. Roderick                                                                      |     |
|    | Introduction                                                                       | 97  |
|    | Problems and approaches                                                            | 98  |
|    | Patterns of spread                                                                 | 98  |
|    | Invasion genetics                                                                  | 98  |
|    | Types of genetic markers                                                           | 103 |
|    | Genealogies                                                                        | 104 |
|    | Analysis of frequencies                                                            | 106 |
|    | Bioinformatics                                                                     | 107 |
|    | Other methods                                                                      | 107 |
|    | Discussion                                                                         | 107 |
|    | Conclusions                                                                        | 108 |
|    | Acknowledgements                                                                   | 109 |
|    | References                                                                         | 109 |
| 6. | Tracing the Origin of Cryptic Insect Pests and Vectors, and                        |     |
|    | their Natural Enemies                                                              | 113 |
|    | J.K. Brown                                                                         |     |
|    | Introduction                                                                       | 113 |
|    | Application of phylogeographical analysis of insect pests and vector               | rs, |
|    | and natural enemies                                                                | 115 |
|    | Genetic markers                                                                    | 116 |
|    | Studies in which molecular markers have been employed for taxonomic                | c   |
|    | identification and tracking of cryptic Hemipterans                                 | 118 |
|    | Invasion of the B biotype Bemisia tabaci in the Americas and evidence              | ce  |
|    | for a species complex                                                              | 118 |
|    | Phylogeographical matching between B. tabaci mitochondria COI                      |     |
|    | haplotypes and natural enemies from the same geographical                          |     |
|    | origin                                                                             | 121 |

|    | First demonstration that an invasive <i>B. tabaci</i> is associated with the spread of severe cassava mosaic disease in East Africa  Upsurge of <i>Myndus crudus</i> , the vector of the phytoplasma inducing | 123 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | lethal yellowing disease of palm, and rapid disease spread following<br>Hurricane Mitch                                                                                                                       |     |
|    | Divergence of aphids on non-cultivated hosts: determining                                                                                                                                                     | 126 |
|    | haplotypes and plant hosts using a mitochondrial marker                                                                                                                                                       | 100 |
|    | Tracking Mediterranean fruit fly introductions in California using                                                                                                                                            | 129 |
|    | composite genotypes                                                                                                                                                                                           | 130 |
|    | Conclusions                                                                                                                                                                                                   | 131 |
|    | Acknowledgements                                                                                                                                                                                              | 131 |
|    | References                                                                                                                                                                                                    | 132 |
| 7. | Predicting Evolutionary Change in Invasive, Exotic Plants                                                                                                                                                     |     |
|    | and its Consequences for Plant-Herbivore Interactions H. Müller-Schärer and T. Steinger                                                                                                                       | 137 |
|    | Introduction                                                                                                                                                                                                  | 137 |
|    | Framework and scope of our study                                                                                                                                                                              | 139 |
|    | Selection pressure in invaded habitats and expected selection on plant                                                                                                                                        |     |
|    | traits                                                                                                                                                                                                        | 140 |
|    | Properties of invaded habitats                                                                                                                                                                                | 140 |
|    | General traits associated with plant invaders                                                                                                                                                                 | 141 |
|    | Traits related to competitors and antagonists                                                                                                                                                                 | 141 |
|    | Caveats                                                                                                                                                                                                       | 143 |
|    | Genetic variation in invasive plants                                                                                                                                                                          | 145 |
|    | Reduced genetic variation in invasive plant populations?                                                                                                                                                      | 145 |
|    | Caveat: low correlation between molecular- and quantitative-genetic                                                                                                                                           |     |
|    | variation                                                                                                                                                                                                     | 147 |
|    | Increased genetic variance through hybridization                                                                                                                                                              | 148 |
|    | Observed evolutionary response                                                                                                                                                                                | 149 |
|    | Outlook                                                                                                                                                                                                       | 153 |
|    | Emerging research topics                                                                                                                                                                                      | 154 |
|    | Acknowledgements                                                                                                                                                                                              | 155 |
|    | References                                                                                                                                                                                                    | 155 |
| 8. |                                                                                                                                                                                                               | 163 |
|    | A.R. Kraaijeveld                                                                                                                                                                                              |     |
|    | Introduction                                                                                                                                                                                                  | 163 |
|    | Field 'experiments'                                                                                                                                                                                           | 164 |
|    | TT. O'                                                                                                                                                                                                        | 165 |
|    | TX . 1.77                                                                                                                                                                                                     | 165 |
|    | <b>D</b> : .                                                                                                                                                                                                  | 166 |
|    |                                                                                                                                                                                                               | 173 |
|    | Lack of genetic variation for resistance                                                                                                                                                                      | 173 |
|    | Resistance is costly                                                                                                                                                                                          | 174 |

|    | Genotype × genotype interactions                                       | 174 |
|----|------------------------------------------------------------------------|-----|
|    | Parasitoids can evolve                                                 | 174 |
|    | Selection pressures fluctuate in space and time                        | 175 |
|    | Concluding thoughts                                                    | 176 |
|    | References                                                             | 177 |
| •  | Total Patrick Notice I Francisco and Transports                        |     |
| 9. | Interactions Between Natural Enemies and Transgenic Insecticidal Crops | 183 |
|    | J.J. Obrycki, J.R. Ruberson and J.E. Losey                             | 105 |
|    | Introduction                                                           | 183 |
|    | Bacillus thuringiensis versus predators and parasitoids                | 185 |
|    | Insect predators                                                       | 186 |
|    | Parasitoids                                                            | 188 |
|    | Field surveys of natural enemies in transgenic insecticidal fields     | 190 |
|    |                                                                        | 190 |
|    | Predatory arthropods<br>Parasitoids                                    | 193 |
|    |                                                                        | 195 |
|    | Insect pathogens                                                       | 195 |
|    | Risks and benefits of transgenic insecticidal crops for natural        | 197 |
|    | enemies<br>Construires                                                 | 198 |
|    | Conclusions                                                            | 199 |
|    | References                                                             | 199 |
| 10 | . The GMO Guidelines Project: Development of Internation               | nal |
|    | Scientific Environmental Biosafety Testing Guidelines for              |     |
|    | Transgenic Plants                                                      | 207 |
|    | A. Hilbeck and the Steering Committee of the GMO Guidelines Project    | 7   |
|    | Introduction                                                           | 207 |
|    | Needs assessment                                                       | 210 |
|    | Plant characterization                                                 | 211 |
|    | Non-target and biodiversity effects                                    | 212 |
|    | Gene flow and its consequences                                         | 216 |
|    | Resistance management                                                  | 216 |
|    | Conclusion                                                             | 217 |
|    | References                                                             | 217 |
|    | References                                                             |     |
| 11 | . Genetic Manipulation of Natural Enemies: Can We Impi                 | ove |
|    | Biological Control by Manipulating the Parasitoid and/o                | r   |
|    | the Plant?                                                             | 219 |
|    | G.M. Poppy and W. Powell                                               |     |
|    | Introduction                                                           | 219 |
|    | Genetic manipulation                                                   | 220 |
|    | Genetic manipulation of parasitoids                                    | 221 |
|    | Parasitoid manipulation via the plant                                  | 226 |
|    | Conclusions                                                            | 228 |
|    | References                                                             | 229 |

| 12. | . Sex-ratio Distorters and Other Selfish Genetic Elements:            |     |
|-----|-----------------------------------------------------------------------|-----|
|     | Implications for Biological Control                                   | 235 |
|     | R. Stouthamer                                                         |     |
|     | Introduction                                                          | 235 |
|     | Overview of sex-ratio distorters and their potential application      | 236 |
|     | Female-biasing sex-ratio distorters                                   | 236 |
|     | Male-biasing sex-ratio distorters                                     | 243 |
|     | Application of PSR factors in biocontrol                              | 245 |
|     | Other heritable bacteria of importance to biological control          | 245 |
|     | Cytoplasmic imcompatibility-inducing Wolbachia                        | 245 |
|     | Detection of sex-ratio distorters and CI-Wolbachia in natural enemies | 247 |
|     | Discussion                                                            | 248 |
|     | References                                                            | 248 |
| [nd | ex                                                                    | 253 |