

WILEY INTERNATIONAL EDITION

NORMAN S. NISE

Control Systems Engineering

FOURTH EDITION

RESTRICTED!

Not For Sale In North America

Contents

1.1	Introduction, 2	
1.2	A History of Control Systems, 4	
1.3	The Control Systems Engineer, 9	
1.4	Response Characteristics and System Configurations, 10	
1.5	Analysis and Design Objectives, 14	
	Introduction to a Case Study, 17	
1.6	The Design Process, 21	
1.7	Computer-Aided Design, 26	
	Summary, 28	
	Review Questions, 29	
	Problems, 29	
	Bibliography, 35	
2. Modeling in the Fre	equency Domain	37
2.1	Introduction, 38	
2.2	Laplace Transform Review, 39	
2.3	The Transfer Function, 49	
viv		

2.4	Electric Network Transfer Functions, 52	
2.5	Translational Mechanical System Transfer Functions, 68	
2.6	Rotational Mechanical System Transfer Functions, 76	
2.7	Transfer Functions for Systems with Gears, 82	
2.8	Electromechanical System Transfer Functions, 87	
2.9	Electric Circuit Analogs, 94	
2.10	Nonlinearities, 97	
2.11	Linearization, 99	
	Case Studies, 105 Summary, 109 Review Questions, 109 Problems, 110 Bibliography, 125	
3. Modeling in the Time Domain		127
3.1	Introduction, 128	
3.2	Some Observations, 129	
3.3	The General State-Space Representation, 133	
3.4	Applying the State-Space Representation, 136	
3.5	Converting a Transfer Function to State Space, 144	
3.6	Converting from State Space to a Transfer Function, 151	
3.7	Linearization, 154	
	Case Studies, 157 Summary, 162 Review Questions, 163 Problems, 163 Bibliography, 172	
4. Time Response		174
4.1	Introduction, 175	

4.2 Poles, Zeros, and System Response, 175

- 4.3 First-Order Systems, 179
- 4.4 Second-Order Systems: Introduction, 182
- 4.5 The General Second-Order System, 188
- 4.6 Underdamped Second-Order Systems, 191
- 4.7 System Response with Additional Poles, 202
- 4.8 System Response with Zeros, 206
- 4.9 Effects of Nonlinearities upon Time Response, 212
- 4.10 Laplace Transform Solution of State Equations, 216
- 4.11 Time Domain Solution of State Equations, 219

Case Studies, 227

Summary, 230

Review Questions, 232

Problems, 233

Design Problems, 244

Cyber Exploration Laboratory, 248

Bibliography, 251

5. Reduction of Multiple Subsystems

- 5.1 Introduction, 253
- 5.2 Block Diagrams, 253
- 5.3 Analysis and Design of Feedback Systems, 263
- 5.4 Signal-Flow Graphs, 266
- 5.5 Mason's Rule, 269
- 5.6 Signal-Flow Graphs of State Equations, 272
- 5.7 Alternative Representations in State Space, 275
- 5.8 Similarity Transformations, 286

Case Studies, 293

Summary, 299

Review Questions, 300

Problems, 301

Design Problems, 318

324

6. Stability	
6.1	Introduction, 325
6.2	Routh-Hurwitz Criterion, 329
6.3	Routh-Hurwitz Criterion: Special Cases, 332
6.4	Routh-Hurwitz Criterion: Additional Examples, 340
6.5	Stability in State Space, 348
	Case Studies, 351 Summary, 353
	•
	Review Questions, 354
	Problems, 354 Design Broblems, 362
	Design Problems, 362
	Cyber Exploration Laboratory, 365
	Bibliography, 366
7. Steady-State Error	s
7.1	Introduction, 369
7.2	Steady-State Error for Unity Feedback Systems, 373
7.3	Static Error Constants and System Type, 379
7.4	Steady-State Error Specifications, 384
7.5	Steady-State Error for Disturbances, 386
7.6	Steady-State Error for Nonunity Feedback Systems, 389
7.5	Sensitivity, 393
7.8	Steady-State Error for Systems in State Space, 396
	Case Studies, 400 Summary, 403 Review Questions, 404

Problems, 405

Design Problems, 419

Bibliography, 423

Cyber Exploration Laboratory, 422

Contents	xix
CONTROLLS	AIA.

590

10.	Frequency	Response	Techniques
TV.	IIVQUUITO	INCOPONION	100111119400

- 10.1 Introduction, 591
- 10.2 Asymptotic Approximations: Bode Plots, 598
- 10.3 Introduction to the Nyquist Criterion, 619
- 10.4 Sketching the Nyquist Diagram, 624
- 10.5 Stability via the Nyquist Diagram, 631
- 10.6 Gain Margin and Phase Margin via the Nyquist Diagram, 635
- 10.7 Stability, Gain Margin, and Phase Margin via Bode Plots, 638
- 10.8 Relation between Closed-Loop Transient and Closed-Loop Frequency Responses, 641
- 10.9 Relation between Closed- and Open-Loop Frequency Responses, 645
- 10.10 Relation between Closed-Loop Transient and Open-Loop Frequency Responses, 651
- 10.11 Steady-State Error Characteristics from Frequency Response, 655
- 10.12 Systems with Time Delay, 660
- 10.13 Obtaining Transfer Functions Experimentally, 665

Case Study, 670

Summary, 672

Review Questions, 673

Problems, 674

Cyber Exploration Laboratory, 687

Bibliography, 688

11. Design via Frequency Response

11.1 Introduction, 691

- 11.2 Transient Response via Gain Adjustment, 692
- 11.3 Lag Compensation, 696
- 11.4 Lead Compensation, 700
- 11.5 Lag-Lead Compensation, 707

Case Studies, 713

Summary, 715

Review Questions, 716
Problems, 716
Design Problems, 721
Cyber Exploration Laboratory, 724
Bibliography, 728

1	2	Danian		CALL	C
1	۷.	Design	via	State	Space

- 12.1 Introduction, 727
- 12.2 Controller Design, 728
- 12.3 Controllability, 735
- 12.4 Alternative Approaches to Controller Design, 740
- 12.5 Observer Design, 745
- 12.6 Observability, 753
- 12.7 Alternative Approaches to Observer Design, 757
- 12.8 Steady-State Error Design via Integral Control, 764

Case Study, 768 Summary, 773 Review Questions, 775 Problems, 776

Design Problems, 781

Cyber Exploration Laboratory, 783 Bibliography, 784

13. Digital Control Systems

- 13.1 Introduction, 786
- 13.2 Modeling the Digital Computer, 790
- **13.3 The** *z***-Transform, 793**
- 13.4 Transfer Functions, 799
- 13.5 Block Diagram Reduction, 802
- 13.6 Stability, 805
- 13.7 Steady-State Errors, 813

726

906

922

940

953

962

968

970

CD-ROM

CD-ROM

Appendix B MATLAB Tutorial

Appendix C MATLAB's Simulink Tutorial

Appendix D MATLAB's GUI Tools Tutorial Appendix E MATLAB's Symbolic Math Toolbox Tutorial Glossary

Answers to Selected Problems Credits

Index Appendix F Matrices, Determinants, and Systems of Equations

G.1 Matrix Definitions and Notations **G.2** Matrix Operations

G.3 Matrix and Determinant Identities **G.4** Systems of Equations

Bibliography

Appendix G Control System Computational Aids

G.2 Root Locus and Frequency Response

G.1 Step Response of a System Represented in State Space

xxii Contents

Appendix H Derivation of a Schematic for a DC Motor		
Appendix I Derivation of the Time Domain Solution of State Equations	CD-ROM	
Appendix J Solution of State Equations for $t_0 \neq 0$	CD-ROM	
Appendix K Derivation of Similarity Transformations	CD-ROM	
Appendix L Root Locus Rules: Derivations		
L.1 Behavior of the Root Locus at Infinity		
L.2 Derivation of Transition Method for Breakaway and Break-in Points		
Solutions to Skill-Assessment Exercises	CD-ROM	
Control Systems Engineering Toolbox		
Lecture Graphics	CD-ROM	
Cyber Exploration Laboratory Experiments		