Design of Experiments

for Engineers and Scientists

Jiju Antony

Preface							
Acknowledgements							
1	Intr	1					
	1.1	Introduction	1				
	1.2						
		3					
	1.3	Summary	5				
	Exercises						
	References						
2	Fun	6					
	2.1	Introduction	6				
	2.2	Basic principles of Design of Experiments	7				
		2.2.1 Randomization	8				
		2.2.2 Replication	9				
		2.2.3 Blocking	10				
	2.3	Degrees of freedom	10				
	2.4 Confounding		11				
	2.5	Design resolution	12				
	2.6	Metrology considerations for industrial designed					
	experiments		12				
		2.6.1 Measurement system capability	13				
		2.6.2 Some tips for the development of a					
,		measurement system	14				
	2.7 Selection of quality characteristics for industrial,						
		experiments	15				
	Exe	rcises	15				
	Refe	erences	16				
3	3 Understanding key interactions in processes						
		3.1 Introduction					
	3.2	Alternative method for calculating the two					
		order interaction effect	20				
3.3 Synergistic inte		Synergistic interaction vs antagonistic interaction	22				
	3.4						

3 3

4.7

5

Exercises

References

4.4.6

Summary

Screening designs

5.1 Introduction

Full factorial designs

6.2.3

6.3.1

Introduction

5.3 Summary Exercises

References

6.1

6.2

6.3

3.5	Scena	rio 2	25	
3.6	Summ	nary	27	
Exe	rcises		27	
Refe	erences		28	
A sy	stemat	ic methodology for Design of Experiments	29	
4.1	Introd	uction	29	
4.2	Barrie	ers in the successful application of DOE	sful application of DOE 29	
4.3	A practical methodology for DOE			
	4.3.1	Planning phase	31	
	4.3.2	Designing phase	33	
	4.3.3	Conducting phase	33	
	4.3.4	Analysing phase	34	
4.4	Analytical tools of DOE			
	4.4.1	Main effects plot	34	
	4.4.2	Interactions plots	35	
	4.4.3	Cube plots	36	
	4.4.4	Pareto plot of factor effects	36	
	4.4.5	Normal Probability Plot of factor effects	36	

37

38

40

41 42

42

43

44

44

44 52

53

53

54

54

54

55

57

58

60

61

Normal Probability Plot of residuals

4.5 Model building for predicting response function

4.6 Confidence interval for the mean response

5.2 Geometric and non-geometric P-B designs

Example of a 2² full factorial design

thickness of 120 units?

Example of a 2³ full factorial design

Objective 1: Determination of main/interaction effects which influence mean plating thickness

Objective 2: Determination of main/interaction effects which influence variability in plating thickness

Objective 4: How to achieve a target plating

Objective 1: To identify the significant main/

interaction effects which affect the process yield

4.4.7 Response surface plots and regression models

99

Randomize the experimental trial order

8.1.8

Index

		8.1.9	Replicate to dampen the effect of noise or		
			uncontrolled variation	99	
		8.1.10			
			using blocking strategy	101	
		8.1.11	Understanding the confounding pattern of		
			factor effects	101	
		8.1.12	Perform confirmatory runs/experiments	102	
	8.2		ary	102	
	Exe	rcises		103	
	Refe	erences		103	
9	Cas	Case studies			
	9.1	Introdu	ection	105	
	9.2	Case st	Case studies		
		9.2.1	Optimization of a radiographic quality welding	4	
			of cast iron	105	
		9.2.2	Reducing process variability using Experimental		
			Design technique objective of the experiment	110	
		9.2.3	Slashing scrap rate using fractional factorial	,	
			experiments	114	
		9.2.4	Optimizing the time of flight of a paper helicopter	117	
		9.2.5	Optimizing a wire bonding process using		
			Design of Experiments	123	
		9.2.6	Training for Design of Experiments using		
			a catapult	127	
		9.2.7	Optimization of core tube life using designed		
			experiments	132	
		9.2.8	Optimization of a spot welding process using		
			Design of Experiments	141	
	9.3	Summa		147 .	
	References				
				148	