

Chemical Micro Process Engineering

Fundamentals, Modelling and Reactions

Contents

Preface V

List of Symbols and Abbreviations XXXI

1	A Multi-faceted, Hierarchic Analysis of Chemical Micro Process Technology 1	
1.1	Micro-reactor Differentiation and Process Intensification 3	
1.1.1	Structure or Being Structured? Miniature Casings and Micro Flow 3	
1.1.2	Symmetry and Unit Cells 3	
1.1.3	Process Design Dominates Equipment Manufacture and Choice 4	
1.1,4	Micro-reactor and Chemical-micro-processing Differentiation 5	
1.1.5	Numbering-up 6	
1.1.5.1	Progressive Increase in Capacity by Addition of Modules 6	
1.1.5.2	Internal vs. External Numbering-up: Scaling-out of Elements or Devices 7	
1.1.5.3	Issues to be Solved; Problems to be Encountered 10	
1.1.5.4	Limits of Mini- and Micro Plants for Scale-up 11	
1.1.5.5	First Large-capacity Numbered-up Micro-flow Devices Reported 11	
1.1.5.6	First Complete Test Station for Multiple-micro-reactor testing 12	
1.1.6	Process Intensification 13	
1.1.6.1	Definitions 13	
1.1.6.2	Matching Fluidics to Physico-chemical Requirements of	
	a Reaction 13	
1.1.6.3	Relationship of and Difference between of PI and Micro-reaction	
	Technology 14	
1.1.6.4	Process Intensification Achieved by Use of Micro Reactors 15	
1.1.7	The Multi-scale Concept 15	
1.1.8	A Word of Caution on the Probability of a Deductive Analysis 17	
1.1.9	Other Concepts Related to or Relevant for Chemical-Micro	
	Processing 17	
1.1.9.1	mTAS: Micro Total Analysis Systems 17	
1.1.9.2	Green Chemistry 17	
1.1.9.3	Sustainable Development and Technology Assessment 17	
1.1.9.4	Microfluidic Tectonics (μFT) 18	

VIII	Content
------	---------

VIII	Contents	
	1.1.9.5	Compact Flow-through Turbulent Reactors, also Termed Microreactor (MR) Technology 18
	1.1.9.6	Supramolecular Aggregates, Also Termed Micro Reactors 19
	1.1.10	Some Historical Information on Micro-reactor Evolution 21
	1.1.11	Micro-reactor Consortia/Forums 22
		The Laboratory on a Chip Consortium (UK) 22
		MicroChemTec and IPmVT (D) 22
		NeSSI (USA) 23
		Micro Chemical Process Technology, MCPT (J) 23
		CPAC Micro-reactor Initiative (USA) 24
	1.2	Consequences of Chemical Micro Processing 25
	1.2.1	Limits of Outlining Top-down Impacts for Micro Reactors 25
	1.2.2	Categories of 'Micro-reactor Fundaments and Impacts' 25
	1.2.3	Comprehensive Reviews and Essays 26
	1.2.4	Reviews and Essays on Physical Fundaments and the Impact on
	425	Chemical Engineering and Process Engineering 27
	1.2.5	Reviews and Essays on the Impact on Process Results, Society/Ecology
	136	and the Economy 27
	1.2.6 1.2.7	Reviews and Essays on Application Topics and Microfabrication 27
	1.3	Reviews and Essays on Institutional Work 28 Physical and Chemical Fundaments 28
	1.3.1	Size Reduction of Process Equipment 28
	1.3.2	Scaling Effects Due to Size Reduction: Hydrodynamics 29
	1.3.3	Chemical Fundaments 31
	1.4	Impact on Chemical Engineering 32
	1.4.1	Basic Requirements on Chemical Engineering from an Industrial
		Perspective 32
	1.4.2	Top-down and Bottom-up Descriptions 32
	1.4.3	A Top-down Description of Chemical Engineering Impacts 32
	1.4.3.1	A Case Study on Gas-phase Reactions 33
	1.4.3.2	Energy Gain from Microstructuring 33
	1.4.3.3	Residence-time Distributions 36
	1.4.3.4	Heat Transfer: Safety in Operation 37
	1.4.3.5	Potential for Size Reduction 40
	1.4.3.6	Proposing a Methodology for Micro-reactor Dimensioning and Layout 42
	1.4.4	A Bottom-up Description of Chemical Engineering Impacts 45
	1.4.4.1	Mixing 45
	1.4.4.2	Heat Transfer 48
	1.4.4.3	Microfluidics 49
	1.4.5	Fouling 50
	1.5	Impact on Process Engineering 51
	1.5.1	Laboratory-scale Processing 51
	1.5.1.1	Provision of a Multitude of Innovative Reactor Designs 51
	1.5.1.2	Quality of Information – More Accurate and In-depth 51
	1.5.1.3	Quantity of Information – Speed of Experimentation 51

1.5.1.4	Shrinkage of Total System 52
1.5.1.5	Integratability of Sensing and Other Functions 52
1.5.2	Industrial Process Development and Optimization 53
1.5.2.1	Information on Industrial Large-scale Chemical Manufacture:
	Time to Market 53
1.5.2.2	Pharmaceutical and Organic Synthesis Process Development 54
1.5.2.3	Approval by Public Authorities 55
1.5.3	Pilot-stage Processing and Centralized Production 55
1.5.3.1	Production as a Challenge for Micro Reactors 55
1.5.3.2	Micro Reactors as Information Tools for Large-scale Production 56
1.5.3.3	Micro Reactors for Specialty-chemicals Production 56
1.5.3.4	Intensification of Transport – Reduction of Equipment Size 58
1.5.4	Distributed, On-Site Production 59
1.5.4.1	An Existing Distributed Small-scale Plant for Phosgene Synthesis 59
1.5.4.2	Distributed Manufacturing – A Conceptual Study of Future Scenarios 59
1.5.4.3	Central Role of Control Systems and Process Models 61
1.5.4.4	Off-shore Gas Liquefaction 61
1.5.4.5	Energy Generation and Environmental Restoration 61
1.5.4.6	Desk-top Pharmacies, Home Factories and More 62
1.5.4.7	Production of Chemical Weapons? 63
1.5.4.8	Standardization 63
1.5.5	The Shape of Future Plants/Plant Construction 63
1.5.5.1	The Outer Shape of Future Chemical Manufacture Plants 63
1.5.5.2	Today's Shape of Micro-reactor Bench-scale Plants:
	Monolith vs. Hybrid/Multi-scale? Specialty vs. Multi-purpose? 65
1.5.5.3	Methodology of Micro/Mini-plant Conception 66
1.5.5.4	Highly Integrated Systems 66
1.6	Impact on Process Results 66
1.6.1	Selection Criteria for Chemical Reactions for Micro Reactors 66
1.6.2	Conversion, Selectivity, Yield 67
1.6.2.1	Conversion 67
1.6.2.2	Selectivity 67
1.6.2.3	Yield 69
1.6.3	Reaction Time – Reaction Rate 69
1.6.3.1	Reaction Time 69
1.6.3.2	Reaction Rate 70
1.6.4	Space–Time Yield 70
	Isomerism 71
1.6.5.1	Cis-Trans Isomerism of Double Bonds 71
1.6.5.2	Regioisomerism in Condensed Aromatics 72
1.6.5.3	Regioisomerism in Aromatics with One Substituent 72
1.6.5.4	Keto-Enol Isomerism 72
1.6.6	Optical Purity 73
1.6.6.1	Enantiomeric Excess (ee) 73
1.6.6.2	Racemization 73

1.6.7	Reaction Mechanism 73		
1.6.7.1	Preferring One Mechanism Among a Multitude 73		
1.6.7.2	Tuning Bulk Reactions to Surface Control 74		
1.6.8	Experimental Protocols 74		
1.6.8.1	Residence Time 74		
1.6.8.2	Reaction Temperature 74		
1.6.8.3	Type of Reactants and Auxiliary Agents 75		
1.6.9	Safety Profits 75		
1.6.9.1	Share of Safety-relevant Industrial Processes 75		
1.6.9.2	Safe Micro-reactor Operations in the Explosive Regime or for		
	Otherwise Hazardous Processes 76		
1.6.10	New Process Regimes 76		
1.6.10.1	Essentially Novel Processes 77		
	Known Processes that Become Entirely Better or Otherwise Different 77		
	Processes Known, but not Used for Safety Reasons 77		
1.7	Impact on Society and Ecology 79		
1.7.1	The 'Control Circuit' for Chemical Micro Processing 79		
1.7.2	Social Acceptance via Education and Awareness 81		
1.7.3	Ecologic Acceptance via Environmental Acceptability 81		
1.7.4	Environmental Restoration 83		
1.7.5	The Micro-reactor Echo in Trade Press and Journal Cover Stories 83		
1.7.6	The Micro-reactor Echo in Newspaper Press and Magazines 90		
1.8	Impact on Economy 91		
1.8.1	Market Development/Commercial Implementation 91		
1.8.1.1	A Historical Description of the Interplay between Technology Push and		
	Market Pull 91		
1.8.1.2	PAMIR – A Market Study Giving First Insight 93		
1.8.1.3	Market Evaluation 94		
1.8,1.4	Start-up Companies and User–Supplier Platforms 95		
1.8.2	Device Fabrication and Quality Control 96		
1.8.2.1	Cost Estimation from Mass-manufacture Scenarios for Chip-based		
	Microfabrication 96		
1.8.2.2	Quality Control 96		
1.8.3	Cost Savings for the Chemical Industry 96		
1.9	Application Fields and Markets for Micro Reactors 97		
1.9.1	Transportation/Energy 97		
1.9.1.1	How Far is the Development? A Critical Review 98		
1.9.2	Petrochemistry 98		
1.9.2.1	How Far is the Development? A Critical Review 98		
1.9.3	Catalyst Discovery and Optimization via High-throughput Screening 99		
1.9.3.1	How Far is the Development? A Critical Review 99		
1.9.4	Bulk Chemicals and Commodities 100		
1.9.4.1	How Far is the Development? A Critical Review 100		
1.9.5	Fine Chemicals and Functional Chemicals 100		
1.9.5.1	Fine Chemicals – Drivers and Trends 100		

1.9.5.2	Fine Chemicals – State of the Art of Micro-reactor Use 102
1.9.5.3	Functional Chemicals 103
1.9.5.4	How far is the Development? A Critical Review 103
1.9.6	Cosmetics and Foods 104
1.9.6.1	How Far is the Development? A Critical Review 104
1.9.7	Extra-terrestrial Processing 104
1.9.7.1	How Far is the Development? A Critical Review 105
1.9.8	Chemical Analysis, Analyte Separation, Assays and Further Diverse
	Applications in the Bio Field 105
1.9.8.1	How Far is the Development? A Critical Review 105
	References 106
2	Modeling and Simulation of Micro Reactors 125
2.1	Introduction 125
2.2	Flow Phenomena on the Micro Scale 127
2.2.1	Gas Flows 127
2.2.1.1	Slip Flow Regime 129
2.2.1.2	Transition Flow and Free Molecular Flow 131
2.2.2	Liquid Flows 136
2.2.2.1	Boundary Slip of Liquids 138
2.2.2.2	Electric Double Layers 139
2.2.2.3	Nano Flows 141
2.2.3	Multiphase Flows 142
2.2.3.1	Phase Transitions in Confined Spaces 143
2.2.3.2	Wetting and Spreading Phenomena 144
2.3	Methods of Computational Fluid Dynamics 146
2.3.1	Fundamentals of the Finite–volume Method 149
2.3.2	Solution of the Navier–Stokes Equation 156
2.3.3	Computational Grids 161
2.3.4	Solution Methods for Linear Algebraic Systems 165
2.4	Flow Distributions 169
2.4.1	Flow in Rectangular Channels 170
2.4.2	Generalized Channel Cross-Sections 171
2.4.3	Periodic and Curved Channel Geometries 172
2.4.4	Multichannel Flow Domains 176
2.5	Heat Transfer 182
2.5.1	Fundamental Equations of Heat Transport 182
2.5.2	Heat Transfer in Rectangular Channels 184
2.5.3	Generalized Channel Cross-sections 185
2.5.4	Periodic Channel Geometries 185
2.5.5	Viscous Heating 188
2.5.6	Micro Heat Exchangers 189
2.5.7	Thermal Optimization of Micro reactors 196
2.6	Mass Transfer and Mixing 197
2.6.1	Transport Equation for Species Concentration 198

XII	Contents

2.6.2	Special Numerical Methods for Convection-Dominated Problems 198
2.6.3	Mixing Channels 200
2.6.4	Estimation of Mixing Efficiency by Flow-field Mapping 206
2.6.5	Multilamination Mixers 207
2.6.6	Active Micro Mixing 209
2.6.7	Hydrodynamic Dispersion 214
2.7	Chemical Kinetics 218
2.7.1	Kinetic Models 218
2.7.2	Numerical Methods for Reacting Flows 220
2.7.3	Reacting Channel Flows 222
2.7.4	Heat-exchanger Reactors 224
2.7.5	Periodic Processing 228
2.8	Free Surface Flow 230
2.8.1	Computational Modeling of Free Surface Flows 231
2.8.2	Micro Flows of Droplets and Bubbles 236
2.9	Transport in Porous Media 240
2.9.1	Morphology of Porous Media 241
2.9.2	Volume-averaged Transport Equations 242
2.9.3	Computation of Transport Coefficients 244
2.9.4	Reaction-diffusion Dynamics inside Pores 247
	References 249
_	
3	Gas-phase Reactions 257
3.1	Catalyst Coating in Micro Channels: Techniques and Analytical
	Characterization 258
3.2	Micro Reactors for Gas-phase Reactions 261
3.2.1	Housing-encased Single-platelet and Multi-platelet Stack Micro
	Reactors 261
3.2.1.1	Reactor 1 [R 1]: Reactor Module with Different Multi-channel Micro
	Reactors 262
3.2.1.2	Reactor 2 [R 2]: Steel Multi-plate-stack Reactor with Micro Mixer 263
3.2.1.3	Reactor 3 [R 3]: Modular Multi-plate-stack Reactor 264
3.2.1.4	Reactor 4 [R 4]: Multi-plate-stack Micro Reactor with Diffusers 266
3.2.1.5	Reactor 5 [R 5]: Cross-flow Multi-Plate Stack Micro Reactor 268
3.2.1.6	Reactor 6 [R 6]: Counter-flow Multi-plate Stack Micro Reactor 270
3.2.1.7	Reactor 7 [R 7]: Multi-Plate Stack Micro Reactor in Heatable Holding
	Unit 272
3.2.1.8	Reactor 8 [R 8]: Ceramic Platelet Micro Reactor 273
3.2.1.9	Reactor 9 [R 9]: Micro Heat Transfer Module 274
3.2.2	Chip Micro Reactors 275
3.2.2.1	Reactor 10 [R 10]: Catalyst Membrane Si-chip Micro Reactor with
	Sensing and Heating Functions 276
3.2.2.2	Reactor 11 [R 11]: Single-channel Chip Reactor 278
3.2.2.3	Reactor 12 [R 12]: Multi-channel–One-plate Chip Reactor 278
3.2.2.4	Reactor 13 [R 13]: Micro-strip Electrode Reactor 279

3.2.2.5	Reactor 14 [R 14]: Self-heating Chip Micro Reactor 280
3.2.2.6	Reactor 15 [R 15]: Modular Multi-functional Chip Reaction System 281
3.2.3	Mini Fixed-bed Micro Reactors 281
3.2.3.1	Reactor 16 [R 16]: Wide Fixed-bed Reactor with Retainer Structures,
	Pressure-drop Channels and Bifurcation-cascade Feed/Withdrawal 282
3.2.3.2	Reactor 17 [R 17]: Mini Packed-bed Reactor 283
3.2.4	Thin-wire and mGauze Micro Reactors 285
3.2.4.1	Reactor 18 [R 18]: Modular Integrated 3D System with Electrically
	Heated µGauze 285
3.2.4.2	Reactor 19 [R 19]: Catalyst-wire-in-channel Micro Reactor 287
3.2.5	Thin-membrane Micro Reactors 288
3.2.5.1	Reactor 20 [R 20]: Permeable-separation Membrane Chip Reactor 288
3.2.6	Micro Reactors without Micro Channel Guidance –
	Alternative Concepts 289
3.2.6.1	Reactor 21 [R 21]: Filamentous Catalytic-bed Membrane Reactor 289
3.2.6.2	Reactor 22 [R 22]: Various Other Reactor Designs 290
3.3	Oxidations 291
3.3.1	Drivers for Performing Oxidations in Micro Reactors 291
3.3.2	Beneficial Micro Reactor Properties for Oxidations 292
3.3.3	Oxidation of Ammonia 293
3.3.3.1	Drivers for Performing the Oxidation of Ammonia 293
3.3.3.2	Beneficial Micro Reactor Properties for the Oxidation of Ammonia 293
3.3.3.3	Typical Results 294
3.3.4	Oxidation of Ethylene – Ethylene Oxide Formation 299
3.3.4.1	Drivers for Performing Ethylene Oxide Formation 299
3.3.4.2	Beneficial Micro Reactor Properties for Ethylene Oxide Formation 299
3.3.4.3	Typical Results 300
3.3.5	Oxidation of 1-Butene – Maleic Anhydride Formation 309
3.3.5.1	Drivers for Performing Maleic Anhydride Formation in Micro
	Reactors 309
3.3.5.2	Beneficial Micro Reactor Properties for Maleic Anhydride Formation 309
3.3.5.3	Typical Results 309
3.3.6	Oxidation of Methanol – Formaldehyde Formation 311
3.3.6.1	Drivers for Performing Formaldehyde Synthesis in Micro Reactors 311
3.3.6.2	Beneficial Micro Reactor Properties for Formaldehyde Synthesis 312
3.3.6.3	Typical Results 312
3.3.7	Oxidation of Derivatized Alcohols – Derivatized Aldehyde
	Formation 314
3.3.7.1	Drivers for Performing Derivatized Aldehyde Synthesis in Micro
	Reactors 314
3.3.7.2	Beneficial Micro Reactor Properties for Derivatized Aldehyde
	Synthesis 314
3.3.7.3	Typical Results 315
3.3.8	Oxidation of Propene to Acrolein 316
3.3.8.1	Drivers for Performing the Oxidation of Propene to Acrolein 316

3.3.8.2	Beneficial Micro Reactor Properties for the Oxidation of Propene to Acrolein 316
2 2 0 2	
3.3.8.3	Typical Results 317
3.3.9	Oxidation of Isoprene – Citraconic Anhydride Formation 318
3.3.9.1	Drivers for Performing Citraconic Anhydride Formation 318
3.3.9.2	Beneficial Micro Reactor Properties for Citraconic Anhydride Formation 318
3.3.9.3	Typical Results 318
3.3.10	/-
	Drivers for Performing Syngas Generation 322
	Beneficial Micro Reactor Properties for Syngas Formation 323
	Typical Results 323
	Oxidation of Carbon Monoxide to Carbon Dioxide 327
	Drivers for Performing the Oxidation of Carbon Monoxide to Carbon
	Dioxide 327
3.3.11.2	Beneficial Micro Reactor Properties for the Oxidation of Carbon
	Monoxide to Carbon Dioxide 327
3.3.11.3	Typical Results 327
3.3.12	Andrussov Process 329
3.3.12.1	Drivers for Performing the Andrussov Process 329
	Beneficial Micro Reactor Properties for the Andrussov Process 329
	Typical Results 330
	Hydrogen/Oxygen Reaction 332
	Drivers for Performing the Hydrogen/Oxygen Reaction 332
	Beneficial Micro Reactor Properties for the Hydrogen/Oxygen
	Reaction 332
3.3.13.3	Typical Results 333
	Oxidation of Formamides – Synthesis of Methyl Isocyanate 339
	Drivers for Performing the Synthesis of Methyl Isocyanate 339
	Beneficial Micro Reactor Properties for the Synthesis of Methyl
0.0.12	Isocyanate 340
3.3.14.3	Typical Results 340
3.4	Hydrogenations 340
3.4.1	Cyclohexene Hydrogenation and Dehydrogenation 340
3.4.1.1	Drivers for Performing the Cyclohexene Hydrogenation and
	Dehydrogenation 340
3.4.1,2	Beneficial Micro Reactor Properties for Cyclohexene Hydrogenation and
J. 1.1, 2	Dehydrogenation 340
3.4.1.3	Typical Results 341
3.4.2	Hydrogenation of <i>c,t,t-</i> 1,5,9-Cyclododecatriene to Cyclododecene 346
3.4.2.1	
J,4,Z,1	Drivers for Performing the Hydrogenation of <i>c,t,t</i> -1,5,9-Cyclododecatriene to Cyclododecene 346
2 1 2 2	
3.4.2.2	Beneficial Micro Reactor Properties for the Hydrogenation of
2 4 2 2	c,t,t-1,5,9-Cyclododecatriene to Cyclododecene 346
3.4.2.3	Typical Results 347

3.4.3	Hydrogenation of 1,5-Cyclooctadiene to Cyclooctene 349
3.4.3.1	Drivers for Performing the Hydrogenation of 1,5-Cyclooctadiene to
	Cyclooctene 349
3.4.3.2	Beneficial Micro Reactor Properties for the Hydrogenation of
	1,5-Cyclooctadiene to Cyclooctene 349
3.4.3.3	Typical Results 350
3.4.4	Hydrogenation of Benzene 351
3.4.4.1	Drivers for Performing the Hydrogenation of Benzene 351
3,4.4.2	Beneficial Micro Reactor Properties for the the Hydrogenation of
	Benzene 351
3.4.4.3	Typical Results 351
3.5	Dehydrogenations 352
3.5.1	Non-oxidative Dehydrogenation of Propane to Propene 352
3.5.1.1	Drivers for Performing the Non-oxidative Dehydrogenation of Propane
	to Propene 352
3.5.1.2	Beneficial Micro Reactor Properties for the Non-oxidative
	Dehydrogenation of Propane to Propene 353
3.5.1.3	Typical Results 353
3.5.2	Oxidative Dehydrogenation of Propane to Propene 355
3.5.2.1	Drivers for Performing the Oxidative Dehydrogenation of Propane to
	Propene 355
3.5.2.2	Beneficial Micro Reactor Properties for the Oxidative Dehydrogenation
	of Propane to Propene 355
3.5.2.3	Typical Results 355
3.5.3	Dehydrogenation of Cyclohexane to Benzol 358
3.5.3.1	Drivers for Performing the Dehydrogenation of Cyclohexane 358
3.5.3.2	Beneficial Micro Reactor Properties for the Dehydrogenation of
	Cyclohexane 358
3.5.3.3	Typical Results 358
3.6	Substitutions 358
3.6.1	Chlorination of Alkanes 358
3.6.1.1	Drivers for Performing the Chlorination of Alkanes 358
3.6.1.2	Beneficial Micro Reactor Properties for the Chlorination of Alkanes 359
3.6.1.3	Typical Results 359
3.7	Eliminations 360
3.7.1	Dehydration of 2-Propanol to Propene 360
3.7.1.1	Drivers for Performing the Dehydration of 2-Propanol to Propene 361
3.7.1.2	Beneficial Micro Reactor Properties for the Dehydration of 2-Propanol
	to Propene 361
3.7.1.3	Typical Results 361
3.8	Additions and Coupling Reactions 364
3.8.1	Phosgene Formation 364
3.8.1.1	Drivers for Performing Phosgene Formation 364
.8.1.2	Beneficial Micro Reactor Properties for Phosgene Formation 364
.8.1.3	Typical Results 365

κvi	Contents

3.8.2	Oxidative Coupling of Methane 366
3.8.2.1	Drivers for Performing the Oxidative Coupling of Methane 366
3.8.2.2	Beneficial Micro Reactor Properties for the Oxidative Coupling of
	Methane 367
3.8.2.3	Typical Results 367
	References 368
4	Liquid- and Liquid/Liquid-phase Reactions 379
4.1	Micro Reactors for Liquid-phase and Liquid/Liquid-phase Reactions 379
4.1.1	Tube Micro Reactors 379
4.1.1.1	Reactor 1 [R 1]: Electrothermal Tubing-based Micro Reactor 379
4.1.1.2	Packed-bed Tube or Capillary Micro Reactors 380
4.1.2.1	Reactor 2 [R 2]: Packed-bed Capillary Micro fFow Reactor 380
4.1.2.2	Reactor 3 [R 3]: Porous-polymer Rod in Tube Micro Reactor 381
4.1.3	Chip Micro-reactor devices 382
4.1.3.1	Reactor 4 [R 4]: Chip Reactor with Micro-channel Mixing Tee(s) 382
4.1.3.2	Reactor 5 [R 5]: Chip Micro Reactor with Multiple Vertical Injections in
	a Main Channel 384
4.1.3.3	Reactor 6 [R 6]: Chip Micro Reactor with Multiple Micro Channel-
	Mixing Tees 386
4.1.3.4	Reactor 7 [R 7]: Chip Micro Reactor with Z-type Flow Configuration 386
4.1.3.5	Reactor [R 8]: Chip Micro Reactor with Extended Serpentine Path and
	Ports for Two-step Processing 387
4.1.3.6	Reactor 9 [R 9]: Chip System with Triangular Interdigital Micro Mixer-
	Reaction Channel 387
4.1.3.7	Reactor 10 [R 10]: 2 × 2 Parallel Channel Chip Reactor 389
4.1.3.8	Reactor 11 [R 11]: Bifurcation-distributive Chip Micro Mixer 390
4.1.3.9	Reactor 12 [R 12]: Micro Y-Piece Micro-channel Chip Reactor 391
	Reactor 13 [R 13]: Triple Feed Continuous Multi-phase Chip Reactor 391
4.1.3.11	Reactor 14 [R 14]: Chip with Bi-/Tri-layer Flow Configuration Using
	Y-type Contact 392
	Reactor 15 [R 15]: Single-channel Chip Micro Reactor 392
4.1.4	Chip-Tube Micro Reactors 393
4.1.4.1	Reactor 16 [R 16]: Liquid-Liquid Micro Chip Distributor–Tube Reactor 393
4.1.4.5	Reactor 17 [R 17]: Fork-like Chip Micro Mixer–Tube Reactor 395
4.1.5	3-D Microfab Reactor Devices 396
4.1.5.1	Reactor 18 [R 18]: Interdigital Micro Mixers 396
4.1.6	3-D Microfab Mixer–Tube Reactors 399
4.1.6.1	Reactor 19 [R 19]: Slit-Type Interdigital Micro Mixer-Tube Reactor 399
4.1.6.2	Reactor 20 [R 20]: Triangular Interdigital Micro Mixer–Tube Reactor 400
4.1.6.3	Reactor 21 [R 21]: Caterpillar Mini Mixer—Tube Reactor 401
4.1.6.4	Reactor 22 [R 22]: [Separation-layer Micro Mixer; Tube] – Reaction
4.1.6.5	System 402 Posetor 23 IP 23h [Impinging jet Migro Miyor Tirbel Reaction
4.1.0.3	Reactor 23 [R 23]: [Impinging-jet Micro Mixer; Tube] – Reaction
	System 403

4.1.7	3-D Microfab Micro Mixer–Micro Heat Exchangers 404
4.1.7.1	Reactor 24 [R 24]: System with Series of Micro Mixers-Cross-Flow
	Reactor Modules 404
4.1.8	2-D Integrated Total Systems with Micro Mixing and Micro Heat
	Exchange Functions 405
4.1.8.1	Reactor 25 [R 25]: CPC Micro Reaction System CYTOS™ 405
4.1.8.2	Reactor 26 [R 26]: Chip Micro Reaction System with Parallel Mixer-
	Reaction Channels 406
4.1.8.3	Reactor 27 [R 27]: [Bi-layer Contactor; High-aspect-ratio Heat
	Exchanger] – Reaction System 407
4.1.8.4	Reactor 28 [R 28]: Multi-channel Integrated Mixer-Heat Exchanger 409
4.1.9	Electrochemical Micro Reactors 410
4.1.9.1	Reactor 29 [R 29]: Multi-sectioned Electrochemical Micro Reactor 410
4.1.9.2	Reactor 30 [R 30]: Electrochemical Diaphragm Micro Flow Cell 411
4.1.9.3	Reactor 31 [R 31]: Electrochemical Capillary Micro Flow Reactor 411
4.1.9.4	Reactor 32 [R 32]: Electrochemical Sheet Micro Flow Reactor 412
4,1.9.5	Reactor 33 [R 33]: Electrochemical Plate-to-Plate Micro Flow Reactor 413
4.1.9.6	Reactor 34 [R 34]: Ceramic Micro Reactor with Interdigitated
	Electrodes 414
4.1.10	Photochemical Micro Reactors 416
4.1. 11	Complete Parallel-synthesis Apparatus 417
4.2	Aliphatic Nucleophilic Substitution 418
4.2.1	Hydroxydehalogenation – Hydrolysis of Chlorides and Acid Chlorides 418
4.2.1.1	Drivers for Performing Chloride Hydrolysis in Micro Reactors 418
4.2.1.2	Beneficial Micro Reactor Properties for Chloride Hydrolysis 418
4.2.1.3	Chloride Hydrolysis Investigated in Micro Reactors 419
4.2.1.3	Experimental Protocols 419
4.2.1.4	Typical Results 420
4.2.2	Cyanodehalogenation – Preparation of Nitriles 421
4.2.2.1	Drivers for Performing Preparation of Nitriles in Micro Reactors 421
4.2.2.2	Beneficial Micro Reactor Properties for Preparation of Nitriles 422
4.2.2.3	Preparation of Nitriles Investigated in Micro Reactors 422
4.2.2.4	Experimental Protocols 422
4.2.2.5	Typical Results 422
4.2.3	Thiocyanatodehydrogenation – Thiocyanation 422
4.2.3.1	Drivers for Performing Thiocyanation in Micro Reactors 422
4.2.3.2	Beneficial Micro Reactor Properties for Thiocyanation 422
4.2.3.3	Thiocyanation Investigated in Micro Reactors 422
4.2.3.4	Experimental Protocols 423
4.2.3.5	Typical Results 423
4.2.4	Azidodehalogenation – Formation of Azides 423
4.2.4.1	Drivers for Performing Azide Substitutions in Micro Reactors 423
4.2.4.2	Beneficial Micro Reactor Properties for Azide Substitutions 423
4.2.4.3	Azide Substitutions Investigated in Micro Reactors 423
4.2.4.4	Experimental Protocols 423

XVIII	Contents

4.2.4.5	Typical Results 423
4.2.5	Aminodehalogenation – Menschutkin Reaction (Formation of
	Quaternary Amines) 423
4.2.5.1	Drivers for Performing the Menschutkin Reaction in Micro
	Reactors 423
4.2.5.2	Beneficial Micro Reactor Properties for the Menschutkin Reaction 424
4.2.5.3	Menschutkin Reaction Investigated in Micro Reactors 424
4.2.5.4	Experimental Protocols 424
4.2.5.5	Typical Results 425
4.2.6	Aminodehalogenation – Acylation of Amines 425
4.2.6.1	Drivers for Performing Acylations of Amines in Micro Reactors 425
4.2.6.2	Beneficial Micro Reactor Properties for Acylations of Amines 426
4.2.6.3	Acylations of Amines Investigated in Micro Reactors 426
4.2.6.4	Experimental Protocols 427
4.2.6.5	Typical Results 428
4.2.7	Aminodehalogenation – Acylating Cleavage with Acetyl Chloride 430
4.2.7.1	Drivers for Performing Acylating Cleavage in Micro Reactors 430
4.2.7.2	Beneficial Micro Reactor Properties for Acylating Cleavage 431
4.2.7.3	Acylating Cleavage Investigated in Micro Reactors 431
4.2.7.4	Experimental Protocols 431
4.2.7.5	Typical Results 431
4.2.8	Alkoxydehydroxylation – Enzymatic Esterification of Acids with
	Alcohols 431
4.2.8.1	Drivers for Performing Enymatic Esterifications in Micro Reactors 431
4.2.8.2	Beneficial Micro Reactor Properties for Enymatic Esterifications 431
4.2.8.3	Enymatic Esterifications Investigated in Micro Reactors 432
4.2.8.4	Experimental Protocols 432
4.2.8.5	Typical Results 432
4.2.9	Amidodeamidation (trans-Amidation) - Desymmetrization of
	Thioureas 433
4.2.9.1	Drivers for Performing Desymmetrization of Thioureas in Micro
	Reactors 433
4.2.9.2	Beneficial Micro Reactor Properties for Desymmetrization of
	Thioureas 433
4.2.9.3	Desymmetrization of Thioureas Investigated in Micro Reactors 433
4.2.9.4	Typical Results 433
4.2.10	Aminodehydroxylation – Acylation of Amines by Acids
	(Peptide Synthesis) 434
4.2.10.1	Drivers for Performing Peptide Syntheses in Micro Reactors 434
	Beneficial Micro Reactor Properties for Peptide Syntheses 434
	Peptide Syntheses Investigated in Micro Reactors 434
	Experimental Protocols 439
	Typical Results 440
4.2.11	Hydroxydearyloxy Substitution + O-Aryl, O-Alkyl Substitution –
	Hydrolysis and Transglycosylation 441

	Content
4.2.11.1	Drivers for Performing Hydrolysis and Transglycosylation in Micro
	Reactors 441
4.2.11.2	Beneficial Micro Reactor Properties for Hydrolysis and
	Transglycosylation 442
4.2.11.3	Hydrolysis and Transglycosylation Investigated in Micro Reactors 442
	Experimental Protocols 442
4.2.11.5	Typical Results 443
4.2.12	Alkoxydehydroxylation – Esterification of Acids 444
4.2.12.1	Drivers for Performing Esterifications in Micro Reactors 444
4.2.12.2	Beneficial Micro Reactor Properties for Esterifications 444
4.2.12.3	Esterifications Investigated in Micro Reactors 444
	Experimental Protocols 444
4.2.12.5	Typical Results 444
4.2.13	Allyldehydro-Substitution – C–C Bond Formation with Acyliminium
	Cations 445
4.2.13.1	Drivers for Performing Electrochemical C–C Bond Formation with
	Cations 445
4.2.13.2	Beneficial Micro Reactor Properties for Electrochemical C–C Bond
	Formation with Cations 445
4.2.13.3	Electrochemical C–C Bond Formation with Cations Investigated in
	Micro Reactors 446
	Experimental Protocols 446
	Typical Results 446
4.3	Aromatic Electrophilic Substitution 448
4.3.1	Nitrodehydrogenation – Nitration of Aromatics 448
4.3.1.1	Drivers for Performing Aromatic Nitrations in Micro Reactors 448
4.3.1.2	Beneficial Micro Reactor Properties for Aromatic Nitrations 448
4.3.1.3	Aromatic Nitration Reactions Investigated in Micro Reactors 449
4.3.1.4	Experimental Nitration Protocols in Micro Reactors 450
4.3.1.5	Typical Results 451
4.3.2	Diazotization + Arylazodehydrogenation – Diazonium Salt
4.3.2.1	Formation + Diazo Coupling (Azo Chemistry) 461
4.3.2.1	Drivers for Performing Azo Chemistry in Micro Reactors 461 Beneficial Micro Reactor Properties for Azo Chemistry 462
4.3.2.3	Azo Chemistry Investigated in Micro Reactors 462
4.3.2.4	Experimental Protocols 463
4.3.2.5	Typical Results 464
4.3.3	Alkoxyborondehydro Substitution – Arylboron Formation 465
4.3.3.1	Drivers for Performing Arylboron Formation in Micro Reactors 465
4.3.3.2	Beneficial Micro Reactor Properties for Arylboron Formation 466
4.3.3.3	Arylboron Formation Investigated in Micro Reactors 466
4.3.3.4	Experimental Protocols 467
マ. ノ.ノ.竹	Experimental Flotocols 40/

4.3.3.5

4.4.1

4.4

Typical Results 467

Aliphatic Electrophilic Substitution 471

Keto–Enol Tautomerism – Isomerization of Allyl Alcohols 471

хх	Contents	
----	----------	--

4.4.1.1	Drivers for Performing Isomerization of Allyl Alcohols in Micro Reactors 471
4.4.1.2	Beneficial Micro Reactor Properties for Isomerization of Allyl Alcohols 471
4.4.1.3	Isomerization of Allyl Alcohols Investigated in Micro Reactors 471
4.4.1.4	Experimental Protocols 472
4.4.1.5	Typical Results 473
4.5	Aromatic Nucleophilic Substitution 475
4.5.1	Aminodehalogenation – Alkylaminodefluorination in the Ciproflaxin®
11311	Multi-step Synthesis 475
4.5.1.1	Drivers for Performing Alkylaminodefluorinations in Micro Reactors 475
4.5.1.2	Beneficial Micro Reactor Properties for Alkylaminodefluorinations 475
4.5.1.3	Alkylaminodefluorinations Investigated in Micro Reactors 476
4.5.1.3	Experimental Protocols 476
4.5.1.4	Typical Results 476
4.5.2	Photocyanation of Aromatic Hydrocarbons 476
4.5,2,1	Drivers for Performing the Photocyanation of Aromatic Hydro-
1151211	carbons 476
4.5.2.2	Beneficial Micro Reactor Properties for the Photocyanation of Aromatic
1.5.2.2	Hydrocarbons 476
4.5.2.3	Photocyanation of Aromatic Hydrocarbons Investigated in Micro
1.5.2.5	Reactors 477
4.5.2.4	Experimental Protocols 477
4.5.2.5	Typical Results 477
4.6	Aromatic Substitution by Metal Catalysis or Other Complex
1.0	Mechanisms 479
4.6.1	Aryldehalogenation – Suzuki Coupling using Pd(0)–Phosphine
1.0.1	Catalysis 479
4.6.1.1	Drivers for Performing Suzuki Couplings in Micro Reactors 479
4.6.1.2	Beneficial Micro Reactor Properties for Suzuki Couplings 479
4.6.1.3	Suzuki Couplings Investigated in Micro Reactors 479
4.6.1.4	Experimental Protocols 480
4.6.1.5	Typical Results 480
4.6.2	Alkinyldehydro Substitution – Sonogashira Coupling using Pd(II)–
1.0.2	Phosphine Copper-free Catalysis 483
4.6.2.1	Drivers for Performing Sonogashira Couplings in Micro Reactors 483
4.6.2.2	Beneficial Micro Reactor Properties for Sonogashira Couplings 483
4.6.2.3	Sonogashira Couplings Investigated in Micro Reactors 483
4.6.2.4	Experimental Protocols 484
4.6.2.5	Typical Results 485
4.6.3	Aryldehalogenation – Kumada–Corriu Reaction using Ni(II)–Phosphine
.,015	Catalysis 485
4.6.3.1	Drivers for Performing Kumada–Corriu Reactions in Micro Reactors 485
4.6.3.2	Beneficial Micro Reactor Properties for Kumada–Corriu Reactions 486
4.6.3.3	Kumada–Corriu Reactions Investigated in Micro Reactors 486

4.6.3.4	Experimental Protocols 486
4.6.3.5	Typical Results 487
4.7	Free-radical Substitution 488
4.7.1	Nitrodehydrogenation – Nitration of Aliphatics 488
4.7.1.1	Drivers for Performing Aliphatics Nitrations in Micro Reactors 488
4.7.1.2	Beneficial Micro Reactor Properties for Aliphatics Nitrations 488
4.7.1.3	Aliphatic Nitration Reactions Investigated in Micro Reactors 489
4.7.1.4	Experimental Nitration Protocols in Micro Reactors 490
4.7.1.5	Typical Results 491
4.8	Addition to Carbon–Carbon Multiple Bonds 492
4.8.1	Hydrobis(ethoxycarbonyl)methyl Addition – Michael Addition 492
4.8.1.1	Drivers for Performing Michael Additions in Micro Reactors 492
4.8.1.2	Beneficial Micro Reactor Properties for Michael Additions 492
4.8.1.3	Michael Additions Investigated in Micro Reactors 492
4.8.1.4	Experimental Protocols 493
4.8.1.5	Typical Results 494
4.8.2	Cycloadditions – The Diels–Alder Reaction 495
4.8.2.1	Drivers for Performing Cycloadditions in Micro Reactors 495
4.8.2.2	Beneficial Micro Reactor Properties for Cycloadditions 495
4.8.2.3	Cycloadditions Investigated in Micro Reactors 495
4.8.2.4	Experimental Protocols 496
4.8.2.5	Typical Results 497
4.8.3	Addition of Oxygen – Epoxidations 498
4.8.3.1	Drivers for Performing Epoxidations in Micro Reactors 498
4.8.3.2	Beneficial Micro Reactor Properties for Epoxidations 498
4.8.3.3	Epoxidations Investigated in Micro Reactors 498
4.8.3.4	Experimental Protocols 498
4.8.3.5	Typical Results 499
4.8.4	Dialkoxy Additions – Electrochemical Dialkoxylation of Hetero-
	aromatics 499
4.8.4.1	Drivers for Performing Dialkoxylations 499
4.8.4.2	Beneficial Micro Reactor Properties for Dialkoxylations 499
4.8.4.3	Dialkoxylations Investigated in Micro Reactors 499
4.8.4.4	Experimental Protocols 500
4.8.4.5	Typical Results 501
4.8.5	Polyalkenyl Addition – Polyacrylate Formation 502
4.8.5.1	Drivers for Performing Polyacrylate Formation in Micro Reactors 502
4.8.5.2	Beneficial Micro Reactor Properties for Polyacrylate Formation 502
4.8.5.3	Polyacrylate Formation Investigated in Micro Reactors 502
4.8.5.4	Experimental Protocols 503
4.8.5.5	Typical Results 504
4.8.6	Polyalkenyl Addition – Polyethylene Formation 506
4.8.6.1	Drivers for Performing Polyethylene Formation in Micro Reactors 506
4.8.6.2	Beneficial Micro Reactor Properties for Polyethylene Formation 506
4.8.6.3	Polyethylene Formation Investigated in Micro Reactors 506

4.8.6	•
4.8.6	
4.8.7	Dihydro Addition – Hydrogen-transfer Reduction 508
4.8.7	0
4.8.7	1
4.8.7	0
4.8.7	
4.8.7	` ~
4.9	Addition to Carbon-Hetero Multiple Bonds 510
4.9.1	1/N-Hydro-2/C-(α-Acyloxyalkyl),2/C-Oxo Biaddition –
	Ugi Four component Condensation (4CC) 510
4.9.1	0 0
4.9.1	
4.9.1	0
4.9.1	1
4.9.1	7 I
4.9.2	Alkyliminodeoxo Bisubstitution – Hantzsch Synthesis 515
4.9.2	7
4.9.2	1
4.9.2	, B 1.22-010 110000101B 310
4.9.2.	1
4.9.2.	,1
4.9.3	O-Hydro, C-Alkyl Addition – Grignard Reaction (Mg Alkylation) 517
4.9.3.	0 0
4.9.3.	1 11 11 11 11 11 11 11 11 11 11 11 11 1
4.9.3.	0
4.9.3.	•
4.9.3.	/ ±
4.9.4	O-Hydro, C-Alkyl Addition – Li Alkylation of Ketones 520
4.9.4.	6
4.9.4.	[· · · · · · · · · · · · · · · · · · ·
4.9.4.	
4.9.4.	*
4.9.4.	71
4.9.5	Alkyliminodeoxo Bisubstitution – Formation of Imines (Schiff Bases) 52
4.9.5.	O
4.9.5.	- F 301 1 01111111111 321
4.9.5.	0
4.9.5.	1
4.9.5.	71
4.9.6	Dual Alkyliminodeoxo Bisubstitution and Ring Closure –
100	Knorr Synthesis 522
4.9.6.	0 ', D-11010 1:000:01B 313
4.9.6.	1
4.9.6.	B Knorr Synthesis Investigated in Micro Reactors 523

4.9.6.4	Experimental Protocols 525
4.9.6.5	Typical Results 525
4.9.7	Alkyliminodeoxo Bisubstitution – Formation of Enamines 526
4.9.7.1	Drivers for Performing Formation of Enamines in Micro Reactors 526
4.9.7.2	Beneficial Micro Reactor Properties for Formation of Enamines 526
4.9.7.3	Formation of Enamines Investigated in Micro Reactors 527
4.9.7.4	Experimental Protocols 527
4.9.7.5	Typical Results 527
4.9.8	Bis(ethoxycarbonyl)methylenedeoxo Bisubstitution – Knoevenagel
	Condensation 528
4.9.9	O-Hydro, C-(a-Acylalkyl) Addition – Aldol Reaction 528
4.9.9.1	Drivers for Performing Aldol Reactions in Micro Reactors 528
4.9.9.2	Beneficial Micro Reactor Properties for Aldol Reactions 528
4.9.9.3	Aldol Reactions Investigated in Micro Reactors 528
4.9.9.4	Experimental Protocols 529
4.9.9.5	Typical Results 529
4.9.10	C,O-Dihydro Addition – BH ₃ –Carbonyl Hydrogenations 530
4.9.10.1	Drivers for Performing BH ₃ -Carbonyl Hydrogenations in Micro
	Reactors 530
4.9.10.2	Beneficial Micro Reactor Properties for BH ₃ -Carbonyl Hydro-
	genations 530
4.9.10.3	BH ₃ -Carbonyl Hydrogenations Investigated in Micro Reactors 530
4.9.10.4	Experimental Protocols 530
4.9.10.5	Typical Results 530
4.9.11	Alkylidenedeoxo Bisubstitution – Wittig Reactions and Horner–
	Emmons Reactions 531
4.9.11.1	Drivers for Performing Wittig Reactions in Micro Reactors 531
4.9.11.2	Beneficial Micro Reactor Properties for Wittig Reactions 531
4.9.11.3	Wittig Reactions Investigated in Micro Reactors 532
4.9.11.4	Experimental Protocols 533
4.9.11.5	Typical Results 534
4.10	Eliminations 536
4.10.1	Hydro–Hydroxy Elimination – Dehydrations of Alcohols 536
4.10.1.1	Drivers for Performing Dehydrations of Alcohols in Micro Reactors 537
4.10.1.2	Beneficial Micro Reactor Properties for Dehydrations of Alcohols 537
4.10.1.3	Dehydrations of Alcohols Investigated in Micro Reactors 537
	Experimental Protocols 537
4.10.1.5	Typical Results 538
4.11	Rearrangements 538
4.11.1	Rearrangements of Hydroperoxides 538
4.11.1.1	Drivers for Performing Rearrangements of Hydroperoxides in Micro
	Reactors 538
4.11.1.2	Beneficial Micro Reactor Properties for Rearrangement of
	Hydroperoxides 539
4.11.1.3	Rearrangements of Hydroperoxides Investigated in Micro Reactors 539

	Experimental Protocols 540
	Typical Results 540
4.12	Oxidations and Reductions 541
4.12.1	C,O-Dihydro Elimination – Br(OAc) ₂ – Oxidations of Alcohols to
	Ketones 541
4.12.1.2	Drivers for Performing Br(OAc) ₂ – Oxidations of Alcohols in Micro
	Reactors 541
4.12.1.2	Beneficial Micro Reactor Properties for Br(OAc) ₂ - Oxidations of
	Alcohols 541
4.12.1.3	Br(OAc) ₂ – Oxidations of Alcohols Investigated in Micro Reactors 541
	Experimental Protocols 541
	Typical Results 542
4.12.2	Oxodedihydro Bisubstitution – Catalyzed Oxidation of Ethanol with
	H ₂ O ₂ to Acetic Acid 542
4.12.2.1	Drivers for Performing Catalyzed Oxidations with H ₂ O ₂ in Micro
	Reactors 542
4.12.2.2	Beneficial Micro Reactor Properties for Catalyzed Oxidations with
	H_2O_2 542
4.12.2.3	Catalyzed Oxidations with H ₂ O ₂ Investigated in Micro Reactors 542
4.12.2.4	Experimental Protocols 542
	Typical Results 543
4.12.3	Oxidation of Arylmethanes – Electrochemical Alternative Routes to the
	Étard Reaction 545
4.12.3.1	Drivers for Performing the Electrochemical Oxidations of Arylmethanes
	in Micro Reactors 545
4.12.3.2	Beneficial Micro Reactor Properties for Electrochemical Oxidations of
	Arylmethanes 545
4.12.3.3	Electrochemical Oxidations of Arylmethanes Investigated in Micro
	Reactors 545
4.12.3.4	Experimental Protocols 545
	Typical Results 546
	Oxidative CO ₂ Elimination – Electrochemical Decarboxylations 548
4.12.4.1	Drivers for Performing Electrochemical Decarboxylations 548
4.12.4.2	Beneficial Micro Reactor Properties for Electrochemical
	Decarboxylations 548
4.12.4.3	Electrochemical Decarboxylations Investigated in Micro Reactors 548
4.12.4.4	Experimental Protocols 548
	Typical Results 548
4.12.5	Photochemical Reductive Biradical Coupling – Pinacol Formation 549
	1-340001 Direction Coupling - 1 macol Politication 349

4.12.5.1 Drivers for Performing Photochemical Biradical Formation in Micro

 $4.12.5.3 \ \ Photochemical \ Biradical \ Formation \ Investigated \ in \ Micro \ Reactors \\ \ \ 550$

4.12.5.2 Beneficial Micro Reactor Properties for Photochemical Biradical

Reactors 549

4.12.5.4 Experimental Protocols 551

	Contents XXV
4 12.5.5	Typical Results 551
4.13	Organic Synthesis Reactions of Undisclosed Mechanism 552
	Vitamin Precursor Synthesis 552
	Drivers for Performing Vitamin Precursor Synthesis in Micro
4,13.1.1	Reactors 552
4.13.1.2	Beneficial Micro Reactor Properties for Vitamin Precursor Synthesis 553
	Vitamin Precursor Synthesis Investigated in Micro Reactors 553
	Experimental Protocols 553
	Typical Results 554
4.13.2	· =
4.13.2.1	Drivers for Performing Methylation of Aromatics in Micro Reactors 554
	Beneficial Micro Reactor Properties for Methylation of Aromatics 554
	Methylation of Aromatics Investigated in Micro Reactors 555
	Experimental Protocols 555
	Typical Results 556
4.14	Inorganic Reactions 556
4.14.1	Halogenation of Acids – The Belousov–Zhabotinskii Reaction 556
	Drivers for Performing Halogenation of Acids in Micro Reactors 556
	Beneficial Micro Reactor Properties for Halogenation of Acids 556
	Halogenation of Acids Investigated in Micro Reactors 557
	Experimental Protocols 557
	Typical Results 557
	Redox Reaction Iodide/Iodate – Dushman Reaction 558
	Drivers for Performing the Dushman Reaction 558
	Beneficial Micro Reactor Properties for the Dushman Reaction 559
	Dushman Reaction Investigated in Micro Reactors 559
	Experimental Protocols 559
	Typical Results 559
	Oxidation of Arsenous Acid – Combined Dushman/Roebuck
	Reaction 560
4.14.3.1	Drivers for Performing Arsenous Acid Oxidation in Micro Reactors 560
	Beneficial Micro Reactor Properties for Arsenous Acid Oxidation 560
4.14.3.3	Arsenous Acid Oxidation Investigated in Micro Reactors 560
	Experimental Protocols 560
	Typical Results 560
4.14.4	Landolt Reaction 562
4.14.4.1	Drivers for Performing Landolt Reactions in Micro Reactors 562
	Beneficial Micro Reactor Properties for Landolt Reactions 563
	Landolt Reactions Investigated in Micro Reactors 563
	Experimental Protocols 563
	Typical Results 563
4.14.5	Transition Metal–Ligand Complex Formation – Co(II) Complexes 563
	Drivers for Performing Co(II) Complex Formations in Micro Reactors 563
	Beneficial Micro Reactor Properties for Co(II) Complex Formations 564
	Co(II) Complex Formations Investigated in Micro Reactors 564

XXVI	Contents
	COMPERING

4.14.5.4	Experimental Protocols 564
4.14.5.5	Typical Results 564
4.14.6	Transition Metal–Ligand Complex Formation – Nickel–Pyridine Complexes 565
4.14.6.1	Drivers for Performing Ni–Pyridine Complex Formations in Micro Reactors 565
4.14.6.2	Beneficial Micro Reactor Properties for Ni-Pyridine Complex Formations 565
4.14.6.3	Ni–Pyridine Complex Formations Investigated in Micro Reactors 566
4.14.6.4	Experimental Protocols 566
	Typical Results 567
4.14.7	Diverse Inorganic Reactions 567
	Ionic Chemical Systems for Electrolyte Diode and Transistors 567 References 568
5	Gas/Liquid Reactions 577
5.1	Micro Reactors for Gas/Liquid Reactions 577
5.1.1	Gas/Liquid Micro Flow Contactors 577
5.1.1.1	Reactor 1 [R 1]: Falling Film Micro Reactor 578
5.1.1.2	Reactor 2 [R 2]: Continuous Two-phase Contactor with Partly Overlapping Channels 579
5.1.2	Gas/Liquid Micro Flow Dispersive Mixers Generating Slug and Annular Patterns $$ 580 $$
5.1.2.1	Reactor 3 [R 3]: Micro Bubble Column 581
5.1.2.2	Reactor 4 [R 4]: Dual-Micro Channel Chip Reactor 583
5.1.2.3	Reactor 5 [R 5]: Single-/Tri-channel Thin-film Micro Reactor 585
5.1.2.4	Reactor 6 [R 6]: Modular Multi-plate-stack Reactor 587
5.1.2.5	Reactor 7 [R 7]: Micro-channel Reactor in Disk Housing 588
5.1.2.6	Reactor 8 [R 8]: Photochemical Single-channel Chip Micro Reactor 589
5.1.3	Gas/Liquid Micro Flow Dispersive Mixers Generating Bubbly Flows and Foams 590
5.1.3.1	Reactor 9 [R 9]: Interdigital Micro Mixer 590
	Reactor 10 [R 10]: Caterpillar Mini Mixer 591
	Reactor 11 [R 11]: Fork-like Chip Micro Mixer – Tube Reactor 592
5.1.4	Gas/Liquid Micro Flow Packed-bed or Trickle-bed Reactors 593
5.1.4.1	Reactor 12 [R 12]: Multiphase Packed-Bed Reactor 593
5.2	Aromatic Electrophilic Substitution 596
5.2.1	Halodehydrogenation – Fluorination of Aromatic Compounds 596
5.2.1.1	Drivers for Performing Aromatic Fluorination in Micro Reactors 596
	Beneficial Micro Reactor Properties for Aromatic Fluorination 597
5.2.1.3	Aromatic Fluorinations Investigated in Micro Reactors 597
	Experimental Protocols 598
	Typical Results 600

Halodehydrogenation – Fluorination of Aliphatics and Other Species 607

Typical Results 600

5.3

5.3.1

Free Radical Substitution 607

5.3.1.1	Drivers for Performing Aliphatics Fluorination in Micro Reactors 607
5.3.1.2	Beneficial Micro Reactor Properties for Aliphatics Fluorination 608
5.3.1.3	Aliphatics Fluorination Investigated in Micro Reactors 608
5.3.1.4	Experimental Protocols 610
5.3.1.5	Typical Results 610
5.3.2	Halodehydrogenation – Chlorination of Alkanes 612
5.3.2.1	Drivers for Performing Alkane Chlorination in Micro Reactors 612
5.3.2.2	Beneficial Micro Reactor Properties for Alkane Chlorination 612
5.3.2.3	Alkane Chlorination Investigated in Micro Reactors 612
5.3.2.4	Experimental Protocols 613
5.3.2.5	Typical Results 614
5.3.3	Halodehydrogenation – Chlorination of α-Keto Compounds 617
5.3.3.1	Drivers for Performing Chlorination of α-Keto Compounds in Micro
	Reactors 617
5.3.3.2	Beneficial Micro Reactor Properties for Chlorination of of α -Keto
	Compounds 617
5.3.3.3	Chlorination of of α-Keto Compounds Investigated in Micro Reactors 617
5.3.3.4	Experimental Protocols 617
5.3.3.5	Typical Results 618
5.3.4	Hydrodehalogenation – Dechlorination of Aromatics 618
5.3.4.1	Drivers for Performing Dechlorination of Aromatics in Micro
	Reactors 618
5.3.4.2	Beneficial Micro Reactor Properties for Dechlorination of Aromatics 618
5.3.4.3	Dechlorination of Aromatics Investigated in Micro Reactors 619
5.3.4.4	Experimental Protocols 619
5.3.4.5	Typical Results 619
5.4	Addition to Carbon–Carbon Multiple Bonds 620
5.4.1	Dihydro Addition – Cycloalkene Hydrogenation 620
5.4.1.1	Drivers for Performing Cycloalkene Hydrogenation in Micro Reactors 620
5.4.1.2	Beneficial Micro Reactor Properties for Cycloalkene Hydrogenation 620
5.4.1.3	Cycloalkene Hydrogenation Investigated in Micro Reactors 620
5.4.1.4	Experimental Protocols 620
5.4.1.5	Typical Results 621
5.4.2	Dihydro Addition – Alkene Aromatic Hydrogenation 622
5.4.2.1	Drivers for Performing Alkene Aromatic Hydrogenation in Micro
	Reactors 622
5.4.2.2	Beneficial Micro Reactor Properties for Alkene Aromatic Hydro-
	genation 623
5.4.2.3	Alkene Aromatic Hydrogenation Investigated in Micro Reactors 623
5.4.2.4	Experimental Protocols 623
5.4.2.5	Typical Results 623
5.4.3	Dihydro Addition – Nitro Group Hydrogenation 623
5.4.3.1	Drivers for Performing Nitro Group Hydrogenation in Micro Reactors 624
5.4.3.2	Beneficial Micro Reactor Properties for Nitro Group Hydrogenation 624

XXVIII	Contents
^^ III .	COMPENS

l	
5.4.3.3	Nitro Group Hydrogenation Investigated in Micro Reactors 624
5.4.3.4	Experimental Protocols 624
5.4.3.5	Typical Results 626
5.4.4	Dihydro Addition – Conjugated Alkene Hydrogenation 631
5.4.4.1	Drivers for Performing Conjugated Alkene Hydrogenation in Micro
	Reactors 631
5.4.4.2	Beneficial Micro Reactor Properties for Conjugated Alkene
	Hydrogenation 632
5.4.4.3	Conjugated Alkene Hydrogenation Investigated in Micro Reactors 632
5.4.4.4	Experimental Protocols 633
5.4.4.5	Typical Results 634
5.4.5	Dihydro Addition – First-order Model Reaction 637
5.4.5.1	Drivers for Modeling First-order Model Reactions in Micro Reactors 637
5.4.5.2	First-order Model Reactions Modeled in Micro Reactors 637
5.4.5.3	Modeling Protocols 637
5.4.5.4	Typical Results 637
5.5	Addition to Carbon–Heteroatom Multiple Bonds 638
5.5.1	S-Metallo, C-Hydroxy Addition – Carbon Dioxide Absorption 638
5.5.1.1	Drivers for Performing Carbon Dioxide Absorption in Micro Reactors 638
5.5.1.2	Beneficial Micro Reactor Properties for Carbon Dioxide Absorption 638
5.5.1.3	Carbon Dioxide Absorption Investigated in Micro Reactors 638
5.5.1.4	Experimental Protocols 638
5.5.1.5	Typical Results 639
5.6	Oxidations and Reductions 642
5.6.1	C,O-Dihydro Elimination – Oxidation of Alcohols to Aldehydes 642
5.6.1.1	Drivers for Performing Oxidation of Alcohols in Micro Reactors 642
5.6.1.2	Beneficial Micro Reactor Properties for Oxidation of Alcohols 642
5.6.1.3	Oxidation of Alcohols Investigated in Micro Reactors 642
5.6.1.4	Experimental Protocols 642
5.6.1.5	Typical Results 642
5.6.2	Cycloadditions – Photo-Diels–Alder Reactions Using Oxygen 643
5.6.2.1	Drivers for Performing Photooxidation of Dienes in Micro Reactors 643
5.6.2.2	Beneficial Micro Reactor Properties for Photooxidation of Dienes 643
5.6.2.3	Photooxidation of Dienes Investigated in Micro Reactors 644
5.6.2.4	Experimental Protocols 644
5.6.2.5	Typical Results 645
5.6.3	Oxidation of Aldehydes to Carboxylic Acids – Addition of Oxygen 646
5.6.3.1	Drivers for Performing Oxidation of Aldehydes to Carboxylic Acids in
	Micro Reactors 646
5.6.3.2	Beneficial Micro Reactor Properties for Oxidation of Aldehydes to
	Carboxylic Acids 646
5.6.3.3	Oxidation of Aldehydes to Carboxylic Acids Investigated in Micro
_	Reactors 646
5.6.3.4	Experimental Protocols 646
5.6.3.5	Typical Results 646

5.7	Inorganic Reactions 648
5.7.1	Sulfite Oxidation 648
5.7.1.1	Drivers for Performing Sulfite Oxidation in Micro Reactors 648
5.7.1.2	Beneficial Micro Reactor Properties for Sulfite Oxidation 648
5.7.1.3	Sulfite Oxidation Investigated in Micro Reactors 648
5.7.1.4	Experimental Protocols 649
5.7.1.5	Typical Results 649
5.7.2	Brønsted Acid–Base Reactions – Ammonia Absorption 649
5.7.2.1	Drivers for Performing Ammonia Absorption in Micro Reactors 649
5.7.2.2	Beneficial Micro Reactor Properties for Ammonia Absorption 650
5.7.2.3	Ammonia Absorption Investigated in Micro Reactors 650
5.7.2.4	Experimental Protocols 650
5.7.2.5	Typical Results 650
	References 651