

SECOND EDITION

INFORMATION VISUALIZATION

PERCEPTION FOR DESIGN

Display

Proto-objects and Patterns

Visual Working Memory

Wisual Working Memory

Visual Color of the Color

MORGAN KAUFMANN

COLIN WARE

Egocentric object and Pattern map

CONTENTS

Figure Credits xv Foreword xvii Preface xix Preface to the First Edition xxi

CHAPTER 1

Foundation for a Science of Data Visualization

Visualization Stages

Experimental Semiotics Based on Perception

Semiotics of Graphics

Pictures as Sensory Languages

Sensory versus Arbitrary Symbols

Properties of Sensory and Arbitrary Representation 13

Testing Claims about Sensory Representations

Arbitrary Conventional Representations

The Study of Arbitrary Conventional Symbols 17

A Model of Perceptual Processing 20

> Stage 1: Parallel Processing to Extract Low-Level Properties of the Visual Scene 20

Stage 2: Pattern Perception 21

Stage 3: Sequential Goal-Directed Processing

Types of Data 23

> Entities 23

Relationships

Attributes of Entities or Relationships 24

Operations Considered as Data

Metadata

Conclusion 27

CHAPTER 2

The Environment, Optics, Resolution, and the Display 29

The Environment 30
Visible Light 30
Ecological Optics 30
Optical Flow 32
Textured Surfaces and Texture Gradients 33
The Paint Model of Surfaces 35

The Eye 38

The Visual Angle Defined 40

The Lens 41

Optics and Augmented-Reality Systems 42
Optics in Virtual-Reality Displays 45

Chromatic Aberration 45

Receptors 46

Simple Acuities 47

Acuity Distribution and the Visual Field 50

Brain Pixels and the Optimal Screen 53

Spatial Contrast Sensitivity Function 57

Visual Stress 62

The Optimal Display 62

Aliasing 63

Number of Dots 65

Superacuities and Displays 6

Temporal Requirements of the Perfect Display 66

Conclusion 67

CHAPTER 3

Lightness, Brightness, Contrast, and Constancy 69

Neurons, Receptive Fields, and Brightness Illusions 70
Simultaneous Brightness Contrast 72
Mach Bands 74
The Chevreul Illusion 74

Simultaneous Contrast and Errors in Reading Maps Contrast Effects and Artifacts in Computer Graphics 75 Edge Enhancement Luminance, Brightness, Lightness, and Gamma 80

Luminance 81 Brightness 83 Adaptation, Contrast, and Lightness Constancy 84 Contrast and Constancy Perception of Surface Lightness Lightness Differences and the Gray Scale Monitor Illumination and Monitor Surrounds 90

Conclusion 93

CHAPTER 4

Color 97

Trichromacy Theory 98

Color Blindness

Color Measurement 100 Change of Primaries 102

CIE System of Color Standards 103 Chromaticity Coordinates 104 Color Differences and Uniform Color Spaces 108

Opponent Process Theory Naming 110 Cross-Cultural Naming 112 Unique Hues 112 Neurophysiology 113 Categorical Colors 113 Properties of Color Channels 113

Color Appearance 116 Color Contrast 117 Saturation 117 Brown 118

viii	INFORMATION	VISUALIZATION:	PERCEPTION	FC
• • • • •	II II OIIIIIIII	, 100, 101, 111, 111, 111, 111, 111, 11		

Applications of Color in Visualization 119 Application 1: Color Specification Interfaces and Color Spaces 11 Application 2: Color for Labeling 123 Application 3: Color Sequences for Data Maps 127 Application 4: Color Reproduction 138 Application 5: Color for Exploring Multidimensional Discrete Data	
Conclusion 143	
CHAPTER 5	
Visual Attention and Information that Pops Out 14	ĮЪ
Searching the Visual Field 146 Useful Field of View 146 Tunnel Vision and Stress 147 The Role of Motion in Attracting Attention 147	
Reading from the Iconic Buffer 147 Preattentive Processing 149 Rapid Area Judgments 154 Coding with Combinations of Features 154 Conjunctions with Spatial Dimensions 155 Highlighting 156 Designing a Symbol Set 157	
Neural Processing, Graphemes, and Tuned Receptors 159 The Grapheme 160	
The Gabor Model and Texture in Visualization 161 Texture Segmentation 163 Tradeoffs in Information Density: An Uncertainty Principle 163	
Texture Coding Information 164 Primary Perceptual Dimensions of Texture 164 Generation of Distinct Textures 166 Spatial-Frequency Channels, Orthogonality, and Maps 167 Texture Resolution 169 Texture Contrast Effects 170 Other Dimensions of Visual Texture 170 Texture Field Displays 172	

140

Glyphs and Multivariate Discrete Data 176
Restricted Classification Tasks 177
Speeded Classification Tasks 178
Integral-Separable Dimension Pairs 180
Monotonicity of Visual Attributes 181
Multidimensional Discrete Data 182
Stars, Whiskers, and Other Glyphs 184

Conclusion 185

CHAPTER 6

Static and Moving Patterns 187

Gestalt Laws 189 Proximity 189 Similarity 190 Connectedness 191 Continuity 191 Symmetry 192 Closure 194 Relative Size 196 Figure and Ground 196

More on Contours 198

Perceiving Direction: Representing Vector Fields 200 Comparing 2D Flow Visualization Techniques 201

Perception of Transparency: Overlapping Data 205
Pattern Learning 206

The Perceptual Syntax of Diagrams 210
The Grammar of Node-Link Diagrams 210
The Grammar of Maps 215

Patterns in Motion 217
Form and Contour in Motion 219
Moving Frames 220
Expressive Motion 221
Perception of Causality 222

Perception of Animate Motion 223
Enriching Diagrams with Simple Animation 224

Conclusion 225

CHAPTER 7

Visual Objects and Data Objects 227

Image-Based Object Recognition 228

Applications of Images in User Interfaces 230

Structure-Based Object Recognition 233
Geon Theory 233
Silhouettes 233

Faces 237

The Object Display and Object-Based Diagrams 239

The Geon Diagram 241

Perceiving the Surface Shapes of Objects 243
Spatial Cues for Representing Scalar Fields 244
Integration of Cues for Surface Shape 247
Interaction of Shading and Contour 248
Guidelines for Displaying Surfaces 252
Bivariate Maps: Lighting and Surface Color 254

Cushion Maps 255

Integration 255

Conclusion 257

CHAPTER 8

Space Perception and the Display of Data in Space 259

Depth Cue Theory 259
Perspective Cues 260
Pictures Seen from the Wrong Viewpoint 263
Occlusion 265
Depth of Focus 266

Cast Shadows 266 Shape-from-Shading 268 Eye Accommodation 269 Structure-from-Motion 269 Eye Convergence Stereoscopic Depth 271 Problems with Stereoscopic Displays Making Effective Stereoscopic Displays Artificial Spatial Cues Depth Cues in Combination 280 Task-Based Space Perception Tracing Data Paths in 3D Graphs 284 Judging the Morphology of Surfaces and Surface Target Detection Patterns of Points in 3D Space Judging Relative Positions of Objects in Space Judging the Relative Movement of Self within the Environment 290 Reaching for Objects Judging the "Up" Direction The Aesthetic Impression of 3D Space (Presence) 293 Conclusion 294

CHAPTER 9

Images, Words, and Gestures 297

Coding Words and Images 297

The Nature of Language 299

Visual and Spoken Language 301

Images vs. Words 303

Links between Images and Words 306

Static Links 307

Gestures as Linking Devices 309

Deixis 309

Symbolic Gestures 310

Expressive Gestures 311

Visual Momentum in Animated Sequences 311

Animated Visual Languages 312

Conclusion 315

CHAPTER 10

Interacting with Visualizations 317

Data Selection and Manipulation Loop 318
Choice Reaction Time 318
2D Positioning and Selection 319
Hover Queries 320
Path Tracing 321
Two-Handed Interaction 321
Learning 322
Control Compatibility 322
Vigilance 324

Exploration and Navigation Loop 325
Locomotion and Viewpoint Control 325
Frames of Reference 333
Map Orientation 337
Focus, Context, and Scale 338
Rapid Interaction with Data 345

Conclusion 349

CHAPTER 11

Thinking with Visualizations 351

Memory Systems 352
Visual Working Memory 352
Visual Working Memory Capacity 355
Rensink's Model 362

Eye Movements 363
Accommodation 364
Eye Movements, Search, and Monitoring 364
Long-Term Memory 366

Problem Solving with Visualizations 370
Visual Problem Solving Processes 371
The Problem Solving Strategy 372
Visual Query Construction 372

The Pattern-Finding Loop 373
The Eye Movement Control Loop 374
The Intrasaccadic Scanning Loop 374
Implications for Interactive Visualization Design 374
Interfaces to Knowledge Structures 379

Creative Problem Solving 383

Conclusion 385

APPENDIX A

Changing Primaries 387

APPENDIX B

CIE Color Measurement System 389

APPENDIX C

The Perceptual Evaluation of Visualization Techniques and Systems 393

Research Goals 393

Psychophysics 394

Detection Methods 395

Method of Adjustment 397

Cognitive Psychology 397

Structural Analysis 398

Testbench Application for Discovery 398
Structured Interviews 399
Rating Scales 399

Statistical Exploration 400
Principal Components Analysis 400
Multidimensional Scaling 400

xiv INFORMATION VISUALIZATION: PERCEPTION FOR DESIGN

Clustering 401 Multiple Regression 401

Cross-Cultural Studies 401

Child Studies 401

Practical Problems in Conducting User Studies 402
Experimenter Bias 402
How Many Subjects to Use? 403
Combinatorial Explosion 403
Task Identification 404
Controls 404
Getting Help 404

Bibliography 405
Subject Index 451
Author Index 479
About the Author 485