BAINITE IN STEELS

SECOND EDITION

H. K. D. H. BHADESHIA

PREFACE	v
ACKNOWLEDGEMENTS	vii
NOMENCLATURE	xvii
1. INTRODUCTION	1
The Discovery of Bainite	2
The Early Research	$\frac{-}{4}$
Crystallography	5
The Incomplete Reaction Phenomenon	6
Carbon Redistribution	
Thermodynamics	8
Paraequilibrium	10
Kinetics	12
Bainitic Steels: Industrial Practice	15
Summary of the Early Research	16
2. BAINITIC FERRITE	19
Sheaves of Bainite	19
Morphology	19
Thickness of Bainite Plates	23
Dislocation Density	26
Quantitative Estimation of the Dislocation Density	28
Chemical Composition	29
Substitutional Alloying Elements	29
Interstitial Alloying Elements	34
Crystallography	35
Autocatalytic Nucleation	42
Crystallographic Theory	44
Application to Bainite	47
High-Resolution Studies of the Shape Change	50
The Shape Change: Further Considerations	51
The Shape Change and The Superledge Mechanism	56
The Structure of the Interface	57
The Crystallography of a Lath of Bainite	58

	Microstructure of Bainite: The Midrib	59
	Summary	60
3.	CARBIDE PRECIPITATION	63
	Upper Bainite	63
	Lower Bainite	66
	Precipitation within Lower Bainitic Ferrite	68
	Precipitation between Lower Bainitic Ferrite Platelets	70
	Kinetics of Carbide Precipitation	71
	Partitioning and Distribution of Carbon	7 1
	Kinetics of Precipitation from Residual Austenite	73
	Kinetics of Precipitation within Bainitic Ferrite	74
	Crystallography of Carbide Precipitation in Bainite	76
	Cementite: Orientation Relationships	76
	The Habit Plane of Cementite	77
	Three-Phase Crystallography	77
	Interphase Precipitation	7 9
	Relief of Strain Energy	81
	Epsilon-Carbide	81
	Eta-Carbide	82
	Chi-Carbide	83
	Chemical Composition of Bainitic Carbides	85
	Summary	88
1	TEMPERING OF BAINITE	91
4.	Introduction	91
	Tempering Kinetics	94
	Tempering of Steels Containing Austenite	94
	Redistribution of Substitutional Solutes	95
	Decomposition of Austenite	96
	Coarsening of Cementite	98
	Secondary Hardening and The Precipitation of Alloy Carbides	100
	Changes in the Composition of Cementite	101
	Remanent Life Prediction	103
	Theory for Carbide Enrichment	106
	Effect of Carbon on Carbide Enrichment	107
	Sequence of Alloy Carbide Precipitation	108
	Effect of Starting Microstructure on Tempering Reactions	112
	Changes in the Composition of Alloy Carbides	113
	Precipitation Hardening with Copper	113
	Summary	115
	outinary —	-10

5.	THERMODYNAMICS	117
	Deviations from Equilibrium	117
	Chemical Potential	118
	Stored Energy due to Transformation	120
	Thermodynamics of Growth	122
	Substitutional Solutes during Growth	122
	Interstitial Solutes during Growth	122
	Approach to Equilibrium	126
	Summary	128
6.	KINETICS	129
	Thermodynamics of Nucleation	130
	Transformation-Start Temperature	131
	Evolution of the Nucleus	132
	Possible Mechanisms of Nucleation	135
	Bainite Nucleation	139
	Empirical Equation for the Bainite-Start Temperature	140
	The Nucleation Rate	1 4 1
	Growth Rate	142
	Theory for the Lengthening of Plates	143
	Growth Rate of Sheaves of Bainite	146
	Growth Rate of Sub-Units of Bainite	146
	Solute-Drag	147
	Partitioning of Carbon from Supersaturated Bainitic Ferrite	150
	Growth with Partial Supersaturation	152
	Stability	153
	The Interface Response Functions	155
	Calculated Data on Transformation with Partial Supersaturation	159
	Summary	161
	Cooperative Growth of Ferrite and Cementite	161
	Overall Transformation Kinetics	163
	Isothermal Transformation Kinetics	163
	Mechanistic Formulation of the Avrami Equation	164
	Austenite Grain Size Effects	166
	Anisothermal Transformation Kinetics	168
	Simultaneous Transformations	169
	Special Cases	169
	Precipitation in Secondary Hardening Steels	17 0
	Time-Temperature-Transformation (TTT) Diagrams	171
	Continuous Cooling Transformation Diagrams	174
	Boron, Sulphur and the Rare Earth Elements	177
	Superhardenability	180

	The Effect of Chemical Segregation	182
	Martensitic Transformation in Partially Bainitic Steels	185
	Autocatalysis	185
	Summary	187
7.	UPPER & LOWER BAINITE	189
	The Matas and Hehemann Model	189
	Quantitative Model	191
	Time to Decarburise Supersaturated Ferrite	193
	Kinetics of Cementite Precipitation	191
	Quantitative Estimation of the Transition Temperature	194
	Comparison of Theory and Experimental Data	196
	Mixed Microstructures Obtained By Isothermal Transformation	196
	Other Consequences of the Transition	199
	Comparison with the Tempering of Martensite	199
	Summary	200
5	CTDECC AND CTD AIN FEEE CTC	•
Э.	STRESS AND STRAIN EFFECTS The Machanian Driving France	201
	The Mechanical Driving Force	202
	The B_d Temperature General Observations	204
		206
	Externally Applied Stress	206
	Internally Generated Stress Plastic Deformation and Mechanical Stabilisation	206
		207
	Technological Implications of Mechanical Stabilisation The Effect on Microstructure	214
		214
	The Effect of Hydrostatic Pressure Machanical Stability of Patrimod Associate	216
	Mechanical Stability of Retained Austenite Transformation under Constraint: Residual Stresses	217
		218
	Anisotropic Strain Due to Transformation Plasticity	219
	Stress-Affected Carbide Precipitation	220
	Summary	22 1
€.	FROM BAINITE TO AUSTENITE	22 5
	Heating a Mixture of Austenite and Upper Bainitic Ferrite	226
	One–Dimensional Growth From a Mixture of Austenite and	
	Bainitic Ferrite	230
	Estimation of the Parabolic Thickening Rate Constant	232
	Anisothermal Transformation	234
	Heating a Mixture of Cementite and Bainitic Ferrite	234
	Effects Associated with Rapid Heating	235
	Summary	235

10.	ACICULAR FERRITE	237
	General Characteristics and Morphology	237
	Mechanism of Growth	240
	Mechanism of Nucleation	243
	Nucleation and the Role of Inclusions	245
	Aluminium and Titanium Oxides	248
	Sulphur	250
	Phosphorus	252
	Nitrogen, Titanium and Boron	254
	Boron and Hydrogen	259
	Stereological Effects	259
	Effect of Inclusions on the Austenite Grain Size in Welds	260
	Influence of Other Transformation Products	260
	Some Specific Effects of Allotriomorphic Ferrite	262
	Lower Acicular Ferrite	265
	Stress-Affected Acicular Ferrite	269
	Effect of Strain on the Acicular Ferrite Transformation	269
	Inoculated Acicular Ferrite Steels	269
	Structural Steel	271
	Steelmaking Technology for the Inoculated Alloys	274
	Summary	275
11	OTHER MORPHOLOGIES OF BAINITE	277
•••	Granular Bainite	277
	Inverse Bainite	279
	Columnar Bainite	279
	'Pearlitic' Bainite	281
	Grain Boundary Lower Bainite	282
	Summary	283
4.0	•	
12.	MECHANICAL PROPERTIES	285
	General Introduction	285
	The Strength of Bainite	286
	Hardness To the Comments	286
	Tensile Strength	289
	Effect of Austenite Grain Size	289
	Effect of Tempering on Strength	291
	The Strength Differential Effect	291
	Temperature Dependence of Strength	293
	Ratio of Proof Stress to Ultimate Tensile Strength	293
	Ductility Ductility The Release Retained Australia	296
	Ductility: The Role of Retained Austenite	297
	Impact Toughness	298

	Fully Bainitic Structures	300
	Fracture Mechanics Approach to Toughness	301
	Microstructural Interpretation of K _{IC}	302
	Cleavage Crack Path	307
	Temper Embrittlement	307
	650°C Reversible Temper Embrittlement	307
	300→350°C Temper Émbrittlement	309
	300→350°C Tempered-Martensite Embrittlement	309
	The Fatigue Resistance of Bainitic Steels	310
	Fatigue of Smooth Specimens	311
	Fatigue Crack Growth Rates	314
	Fatigue in Laser-Hardened Samples	318
	Fatigue and Retained Austenite	319
	Corrosion Fatigue	319
	Stress Corrosion Resistance	321
	The Creep Resistance of Bainitic Steels	323
	Heat Treatment	326
	$2\frac{1}{4}Cr1Mo\ Type\ Steels$	327
	1ČrMoV Type Steels	327
	$\frac{1}{4}$ CrMoV Type Steels	329
	Enhanced Cr–Mo Bainitic Steels	329
	Tungsten-Strengthened Steels	331
	Regenerative Heat Treatments	332
	Transition Metal Joints	334
	Reduced-Activation Steels	336
	Steels with Mixed Microstructures	339
	Summary	340
13.	MODERN BAINITIC ALLOYS	343
	Alternatives to the Ferrite-Pearlite Microstructure	343
	Strength	345
	Bainitic Steels	347
	Controlled-Rolling of Bainitic Steels	348
	Crystallographic Texture	350
	Rapidly Cooled Control-Rolled Steels	353
	Pipeline and Plate Steels	353
	Process Parameters	355
	Chemical Segregation	358
	Steels with a High Formability	358
	TRIP-Assisted Steels	362
	Transformations During Intercritical Annealing	365
	Dieless Drawn Bainitic Steels	366

	Ultra-Low Carbon Bainitic Steels	368
	Bainitic Forging Steels	370
	High Strength Bainitic Steels without Carbides	373
	Thermomechanically Processed High-Strength Steels	377
	Ausformed Bainitic Steels	378
	Strain-Tempered Bainitic Steels	380
	Creep Tempering of Bainite	380
	Bainite in Rail Steels	382
	Track Materials	382
	Silicon-rich Carbide-free Bainitic Rail Steels	385
	Wheels	387
	Bearing Alloys	387
	Bainitic Cast Irons	388
	Austempered Ductile Cast Irons	389
	Wear of Bainitic Cast Irons	395
14.	OTHER ASPECTS	397
	Bainite in Iron and its Substitutional Alloys	397
	The Weldability of Bainitic Steels	397
	Electrical Resistance	399
	Internal Friction	4 01
	Internal Stress	401
	Bainite in Iron–Nitrogen Alloys	402
	Effect of Hydrogen on Bainite Formation	403
15.	THE TRANSFORMATIONS IN STEEL	405
	Key Characteristics of Transformations Steels	408
	Notes Related to Table 15.1	408
16.	REFERENCES	411
17.	AUTHOR INDEX	441

449

18. SUBJECT INDEX