# INTERNATIONAL EDITION

# MODERN CONTROL SYSTEMS

TENTH EDITION

RICHARD C. DORF ROBERT H. BISHOP

# **Contents**

| Preface  | xv        |     |
|----------|-----------|-----|
| About th | e Authors | xxv |

| CHAPTER 1 | Introduction to Control Systems | 1 |
|-----------|---------------------------------|---|
| CHAPIER I | impaucion to Control Systems    | 1 |

| 1.1  | Introduction, 2                                     |
|------|-----------------------------------------------------|
| 1.2  | History of Automatic Control 4                      |
| 1.3  | Two Examples of the Use of Feedback 7               |
| 1.4  | Control Engineering Practice 8                      |
| 1.5  | Examples of Modern Control Systems 9                |
| 1.6  | Automatic Assembly and Robots 16                    |
| 1.7  | The Future Evolution of Control Systems 17          |
| 1.8  | Engineering Design 18                               |
| 1.9  | Mechatronic Systems 19                              |
| 1.10 | Control System Design 23                            |
| 1.11 | Design Example: Turntable Speed Control 24          |
| 1.12 | Design Example: Insulin Delivery Control System 26  |
| 1.13 | Sequential Design Example: Disk Drive Read System 2 |
|      | Exercises 29                                        |
|      | Problems 30                                         |
|      | Advanced Problems 34                                |
|      | Design Problems 35                                  |
|      | Terms and Concepts 36                               |

# CHAPTER 2 Mathematical Models of Systems 37

| 2.1  | Introduction 38                                   |     |
|------|---------------------------------------------------|-----|
| 2.2  | Differential Equations of Physical Systems 38     |     |
| 2.3  | Linear Approximations of Physical Systems 43      |     |
| 2.4  | The Laplace Transform 46                          |     |
| 2.5  | The Transfer Function of Linear Systems 52        |     |
| 2.6  | Block Diagram Models 63                           |     |
| 2.7  | Signal-Flow Graph Models 72                       |     |
| 2.8  | Computer Analysis of Control Systems 78           |     |
| 2.9  | Design Examples 79                                |     |
| 2.10 | The Simulation of Systems Using MATLAB 89         |     |
| 2.11 | Sequential Design Example: Disk Drive Read System | 102 |
| 2.12 | Summary 105                                       |     |
|      | Exercises 105                                     |     |
|      | Problems 111                                      |     |
|      | Advanced Problems 124                             |     |
|      | Design Problems 125                               |     |
|      | MATLAB Problems 126                               |     |
|      | Terms and Concepts 128                            |     |

## CHAPTER 3 State Variable Models 130

| 3.1  | Introduction 131                                      |     |
|------|-------------------------------------------------------|-----|
| 3.2  | The State Variables of a Dynamic System 131           |     |
| 3.3  | The State Differential Equation 134                   |     |
| 3.4  | Signal-Flow Graph and Block Diagram Models 137        |     |
| 3.5  |                                                       | 147 |
| 3.6  | The Transfer Function from the State Equation 153     |     |
| 3.7  | The Time Response and the State Transition Matrix 154 |     |
| 3.8  | A Discrete-Time Evaluation of the Time Response 158   |     |
| 3.9  | Design Example: Printer Belt Drive 163                |     |
| 3.10 | Analysis of State Variable Models Using MATLAB 170    |     |
| 3.11 | Sequential Design Example: Disk Drive Read System 173 |     |
| 3.12 | Summary 176                                           |     |
|      | Exercises 177                                         |     |
|      | Problems 179                                          |     |
|      | Advanced Problems 186                                 |     |
|      | Design Problems 188                                   |     |
|      | MATLAB Problems 189                                   |     |
|      | Terms and Concepts 190                                |     |

## CHAPTER 4 Feedback Control System Characteristics 191

Terms and Concepts 242

| 4.1  | Open- and Closed-Loop Control Systems 192                  |
|------|------------------------------------------------------------|
| 4.2  | Sensitivity of Control Systems to Parameter Variations 194 |
| 4.3  | Control of the Transient Response of Control Systems 197   |
| 4.4  | Disturbance Signals in a Feedback Control System 201       |
| 4.5  | Steady-State Error 206                                     |
| 4.6  | The Cost of Feedback 208                                   |
| 4.7  | Design Example: English Channel Boring Machines 209        |
| 4.8  | Design Example: Mars Rover Vehicle 212                     |
| 4.9  | Control System Characteristics Using MATLAB 214            |
| 4.10 | Sequential Design Example: Disk Drive Read System 219      |
| 4.11 | Summary 224                                                |
|      | Exercises 226                                              |
|      | Problems 228                                               |
|      | Advanced Problems 235                                      |
|      | Design Problems 238                                        |
|      | MATLAB Problems 240                                        |

#### CHAPTER 5 The Performance of Feedback Control Systems 243

- 5.1 Introduction 244
- 5.2 Test Input Signals 245
- Performance of a Second-Order System 247 5.3
- Effects of a Third Pole and a Zero on the Second-Order System Response 253 5.4
- 5.5 Estimation of the Damping Ratio 258
- 5.6 The s-Plane Root Location and the Transient Response
- 5.7 The Steady-State Error of Feedback Control Systems 260
- 5.8 The Steady-State Error of Nonunity Feedback Systems 265
- 5.9 Performance Indices 267
- 5.10 The Simplification of Linear Systems 276
- 5.11 Design Example: Hubble Telescope Pointing Control
- 282 5.12 System Performance Using MATLAB and Simulink
- 5.13 Sequential Design Example: Disk Drive Read System 291
- 5.14 Summary 295

Exercises 295

Problems 299

Advanced Problems 304

Design Problems 306

MATLAB Problems 308

Terms and Concepts 310

#### CHAPTER 6 The Stability of Linear Feedback Systems 311

- The Concept of Stability 312 6.1
- The Routh-Hurwitz Stability Criterion 316 6.2
- The Relative Stability of Feedback Control Systems 324 6.3
- 6.4 The Stability of State Variable Systems 325
- Design Example: Tracked Vehicle Turning Control 329 6.5
- System Stability Using MATLAB 331 6.6
- 6.7 Sequential Design Example: Disk Drive Read System 339
- 342 6.8 Summary

Exercises 343

Problems 345

Advanced Problems 348

Design Problems 350

MATLAB Problems 352

Terms and Concepts 353

#### CHAPTER 7 The Root Locus Method 354

| 7.1         | Introduction 355                                                 |
|-------------|------------------------------------------------------------------|
| 7.2         | The Root Locus Concept 355                                       |
| 7.3         | The Root Locus Procedure 359                                     |
| 7.4         | An Example of a Control System Analysis and Design Utilizing the |
|             | Root Locus Method 374                                            |
| 7.5         | Parameter Design by the Root Locus Method 378                    |
| <b>7.</b> 6 | Sensitivity and the Root Locus 383                               |
| 7.7         | Three-Term (PID) Controllers 391                                 |

- Design Example: Laser Manipulator Control System 393 7.8
- 7.9 The Design of a Robot Control System 396
- 7.10 The Root Locus Using MATLAB 398
- Sequential Design Example: Disk Drive Read System 7.11
- 7.12 Summary 405 Exercises 409 Problems 412 Advanced Problems 421 Design Problems 424 MATLAB Problems 430 Terms and Concepts 431

#### CHAPTER 8 Frequency Response Methods 432

| 9.I | Introduction 433                                   |
|-----|----------------------------------------------------|
| 8.2 | Frequency Response Plots 435                       |
| 8.3 | An Example of Drawing the Bode Diagram 452         |
| 8.4 | Frequency Response Measurements 456                |
| 8.5 | Performance Specifications in the Frequency Domain |
| 0 2 | Log Magnitude and Phage Diagrams 461               |

Log Magnitude and Phase Diagrams 461 8.6 8.7 Design Example: Engraving Machine Control System

458

- 8.8 Frequency Response Methods Using MATLAB 465
- 8.9 Sequential Design Example: Disk Drive Read System 471
- 8.10 Summary 472 Exercises 477 Problems 480 Advanced Problems 490 Design Problems 491 MATLAB Problems 494 Terms and Concepts 496

#### CHAPTER 9 Stability in the Frequency Domain 497

- 9.1 Introduction 498
- 9.2 Mapping Contours in the *s*-Plane

χi Contents

| 9.3  | The Nyquist Criterion 504                                   |
|------|-------------------------------------------------------------|
| 9.4  | Relative Stability and the Nyquist Criterion 516            |
| 9.5  | Time-Domain Performance Criteria Specified in the Frequency |
|      | Domain 522                                                  |
| 9.6  | System Bandwidth 529                                        |
| 9.7  | The Stability of Control Systems with Time Delays 530       |
| 9.8  | Design Example: Remotely Controlled Reconnaissance          |
|      | Vehicle 534                                                 |
| 9.9  | PID Controllers in the Frequency Domain 537                 |
| 9.10 | Stability in the Frequency Domain Using MATLAB 538          |
| 9.11 | Sequential Design Example: Disk Drive Read System 547       |
| 9.12 | Summary 549                                                 |
| 7.12 | Exercises 556                                               |
|      | Problems 562                                                |
|      | Advanced Problems 572                                       |
|      |                                                             |
|      | Design Problems 574                                         |
|      | MATLAB Problems 579                                         |
|      | Terms and Concepts 580                                      |
|      |                                                             |
|      |                                                             |
|      |                                                             |
| The  | Design of Feedback Control Systems 581                      |
| 10.1 | Introduction 582                                            |
| 10.2 | Approaches to System Design 583                             |
| 10.3 | Cascade Compensation Networks 585                           |
| 10.3 | Phase-Lead Design Using the Bode Diagram 589                |
| 10.5 | Phase-Lead Design Using the Root Locus 595                  |
| 10.5 | System Design Using Integration Networks 601                |
|      |                                                             |
| 10.7 | Phase-Lag Design Using the Root Locus 604                   |

Phase-Lag Design Using the Bode Diagram 608

**10.12** Design Example: Rotor Winder Control System 620

**10.15** Sequential Design Example: Disk Drive Read System 633

656

Computer Methods 613 **10.10** Systems with a Prefilter 615

> Advanced Problems 649 Design Problems 652 MATLAB Problems

> Terms and Concepts 658

10.16 Summary 634 Exercises 636 Problems 638

**10.11** Design for Deadbeat Response 617

**10.13** Design Example: The X-Y Plotter 623 **10.14** System Design Using MATLAB 626

System Design on the Bode Diagram Using Analytical and

CHAPTER 10

10.8 10.9

## CHAPTER 11 The Design of State Variable Feedback Systems 659

- 11.1 Introduction 660
- **11.2** Controllability 660
- **11.3** Observability 663
- 11.4 Full-State Feedback Control Design 666
- **11.5** Ackermann's Formula 670
- **11.6** Observer Design 671
- 11.7 Compensator Design: Integrated Full-State Feedback and Observer 675
- 11.8 Reference Inputs 681
- **11.9** Optimal Control Systems 683
- 11.10 Internal Model Design 693
- 11.11 Design Example: Automatic Test System 696
- 11.12 State Variable Design Using MATLAB 699
- 11.13 Sequential Design Example: Disk Drive Read System 707
- **11.14** Summary 709

Exercises 709

Problems 710

Advanced Problems 714

Design Problems 717

MATLAB Problems 719

Terms and Concepts 722

## CHAPTER 12 Robust Control Systems 723

- 12.1 Introduction 724
- 12.2 Robust Control Systems and System Sensitivity 725
- **12.3** Analysis of Robustness 728
- 12.4 Systems with Uncertain Parameters 731
- 12.5 The Design of Robust Control Systems 733
- 12.6 PID Controllers 738
- 12.7 The Design of Robust PID Controlled Systems 740
- 12.8 Design Example: Aircraft Autopilot 745
- 12.9 The Design of a Space Telescope Control System 746
- **12.10** The Design of a Robust Bobbin Drive 748
- **12.11** The Robust Internal Model Control System 751
- 12.12 The Design of an Ultra-Precision Diamond Turning Machine 753
- 12.13 The Pseudo-Quantitative Feedback System 757
- **12.14** Robust Control Systems Using MATLAB 759
- **12.15** Sequential Design Example: Disk Drive Read System 762
- **12.16** Summary 764

Exercises 766

Problems 767

Advanced Problems 773

Design Problems 777

MATLAB Problems 784

Terms and Concepts 786

## CHAPTER 13 Digital Control Systems 787

|   | Digital Control Systems 707 |                                                            |  |
|---|-----------------------------|------------------------------------------------------------|--|
|   | 13.1                        | Introduction 788                                           |  |
|   | 13.2                        | Digital Computer Control System Applications 788           |  |
|   | 13.3                        | Sampled-Data Systems 790                                   |  |
|   | 13.4                        | The z-Transform 793                                        |  |
| • | 13.5                        | Closed-Loop Feedback Sampled-Data Systems 798              |  |
|   | 13.6                        | Stability Analysis in the z-Plane 800                      |  |
|   | 13.7                        | Performance of a Sampled-Data, Second-Order System 801     |  |
|   | 13.8                        | Closed-Loop Systems with Digital Computer Compensation 804 |  |
|   | 13.9                        |                                                            |  |
|   | 13.10                       | The Root Locus of Digital Control Systems 808              |  |
|   | 13.11                       | Implementation of Digital Controllers 812                  |  |
|   | 13.12                       | Digital Control Systems Using MATLAB 813                   |  |
|   | 13.13                       | Sequential Design Example: Disk Drive Read System 818      |  |
|   | 13.14                       | Summary 820                                                |  |
|   |                             | Exercises 820                                              |  |
|   |                             | Problems 822                                               |  |
|   |                             | Advanced Problems 824                                      |  |
|   |                             | Design Problems 826                                        |  |
|   |                             | MATLAB Problems 827                                        |  |
|   |                             | Terms and Concepts 828                                     |  |
|   |                             | •                                                          |  |
|   |                             |                                                            |  |

APPENDIX A MATLAB Basics 831

APPENDIX B Simulink Basics 849

References 858

Index 869

### **WEB RESOURCES**

APPENDIX C Symbols, Units, and Conversion Factors

APPENDIX D Laplace Transform Pairs

APPENDIX E An Introduction to Matrix Algebra

APPENDIX F Decibel Conversion

APPENDIX G Complex Number

APPENDIX H z-Transform Pairs