International Edition

Structural Steel Design

Jack C. McCormac + James K. Nelson, Jr.

Contents

Preface			iii
CHAPTE	R 1 Introd	uction to Structural Steel Design	1
	1.1	Advantages of Steel as a Structural Material	1
	1.2	Disadvantages of Steel as a Structural Material	3
	1.3	Early Uses of Iron and Steel	4
	1.4	Steel Sections	6
	1.5	Metric Units	10
	1.6	Cold-Formed Light-Gage Steel Shapes	11
	1.7	Stress-Strain Relationships in Structural Steel	12
	1.8	Modern Structural Steels	16
	1.9	Uses of High-Strength Steels	22
	1.10	Measurement of Toughness	23
	1.11	Jumbo Sections	24
	1.12	Lamellar Tearing	25
	1.13	Furnishing of Structural Steel	25
	1.14	The Work of the Structural Designer	28
	1.15	Responsibilities of the Structural Designer	28
	1.16	Economical Design of Steel Members	29
	1.17	Failure of Structures	33
	1.18	Handling and Shipping Structural Steel	34
	1.19	Calculation Accuracy	34
	1.20	Computers and Structural Steel Design	34
	1.21	Computer-Aided Design in this Text	35
CHAPTE	R 2 Specifi	cations, Loads, and Methods of Design	36
	2.1	Specifications and Building Codes	36
	2.2	Loads	38
	2.3	Dead Loads	38
	2.4	Live Loads	39
	2.5	Environmental Loads	42

vi Contents

	2.6	Load and Resistance-Factor Design	48
	2.7	Load Factors	49
	2.8	Resistance Factors	53
	2.9	Discussion of Sizes of Load and Resistance Factors	54
	2.10	Reliability and the LRFD Specification	54
	2.11	Advantages of LRFD	57
	2.12	Computer Example	58
		Problems	60
CHAPTE	R3 Analys	sis of Tension Members	61
	3.1	Introduction	61
	3.2	Design Strength of Tension Members	64
	3.3	Net Areas	65
	3.4	Effect of Staggered Holes	68
	3.5	Effective Net Areas	73
	3.6	Connecting Elements for Tension Members	80
	3.7	Block Shear	81
	3.8	Computer Example	87
		Problems	88
CHAPTE	98		
	4.1	Selection of Sections	98
	4.2	Built-Up Tension Members	104
	4.3	Rods and Bars	108
	4.4	Pin-Connected Members	112
	4.5	Design for Fatigue Loads	115
	4.6	Computer Example	117
		Problems	118
CHAPTE	R 5 Introd	nction to Axially Loaded Compression Members	122
	5.1	General	122
	5.2	Residual Stresses	125
	5.3	Sections Used for Columns	126
	5.4	Development of Column Formulas	130
	5.5	The Euler Formula	131
	5.6	End Restraint and Effective Lengths of Columns	132
	5.7	Stiffened and Unstiffened Elements	136
	5.8	Long, Short, and Intermediate Columns	140
	5.9	Column Formulas	140
	5.10	Maximum Slenderness Ratios	142
	5.11	Example Problems	142
	5.12	Computer Example	147
		Problems	148

		Contents	vii
HAPTER 6	Design	of Axially Loaded Columns	154
	6.1	Introduction	154
	6.2	LRFD Design Tables	157
	6.3	Column Splices	161
	6.4	Built-Up Columns	164
	6.5	Built-Up Columns with Components in Contact with Each Other	164
	6.6	Connection Requirements for Built-Up Columns whose	
		Components are in Contact with Each Other	166
	6.7	Built-Up Columns with Components not in Contact with	171
		Each Other	171
	6.8	Introductory Remarks Concerning Flexural-Torsional Buckling of Compression Members	176
	6.9	Single-Angle Compression Members	177
	6.10	Computer Example	177
	0.10	Problems	178
HAPTER 7	Design	of Axially Loaded Compression Members, Continued	182
	7.1	Further Discussion of Effective Lengths	182
	7.2	Frames Meeting Alignment Chart Assumptions	187
	7.3	Frames not Meeting Alignment Chart Assumptions as to Joint	
	,	Rotations	189
	7.4	Stiffness-Reduction Factors	192
	7.5	Columns Leaning on Each Other for In-Plane Design	195
	7.6	Base Plates for Concentrically Loaded Columns	199
	7.7	Computer Example	209
		Problems	211
CHAPTER 8	Introd	uction to Beams	215
	8.1	Types of Beams	215
	8.2	Sections Used as Beams	215
	8.3	Bending Stresses	216
	8.4	Plastic Hinges	217
	8.5	Elastic Design	218
	8.6	The Plastic Modulus	218
	8.7	Theory of Plastic Analysis	221
	8.8	The Collapse Mechanism	222
	8.9	The Virtual-Work Method	223
	8.10	Location of Plastic Hinge for Uniform Loadings	227
	8.11	Continuous Beams	228
	8.12	Building Frames	230
		Problems	232

CHAPTER 9	Design	of Beams for Moments	241
	9.1	Introduction	241
	9.2	Yielding Behavior—Full Plastic Moment, Zone 1	244
	9.3	Design of Beams, Zone 1	246
	9.4	Lateral Support of Beams	253
	9.5	Introduction to Inelastic Buckling, Zone 2	255
	9.6	Moment Capacities, Zone 2	258
	9.7	Elastic Buckling, Zone 3	259
	9.8	Design Charts	262
	9.9	Noncompact Sections	265
	9.10	Computer Example	267
		Problems	268
CHAPTER 10	Desig	n of Beams—Miscellaneous Topics	274
	10.1	Design of Continuous Beams	274
	10.2	Shear	276
	10.3	Deflections	282
	10.4	Webs and Flanges with Concentrated Loads	287
	10.5	Unsymmetrical Bending	294
	10.6	Design of Purlins	296
	10.7	The Shear Center	300
	10.8	Beam Bearing Plates	305
	10.9	Computer Example	308
		Problems	309
HAPTER 11	Bendi	ng and Axial Force	316
	11.1	Occurence	316
	11,2	Members Subject to Bending and Axial Tension	317
	11.3	Computer Examples for Members Subject to Bending and Axial Tension	320
	11.4	First-Order and Second-Order Moments for Members Subject	
		to Axial Compression and Bending	322
	11.5	Magnification Factors	323
	11.6	Moment Magnification or C_m Factors	325
	11.7	Review of Beam-Columns in Braced Frames	329
	11.8	Review of Beam-Columns in Unbraced Frames	334
	11.9	Design of Beam-Columns—Braced or Unbraced	336
	11.10	Computer Examples for Members Subject to Bending and Axial	
		Compression	343
		Problems	345

		Contents	D
CHAPTER 12	Bolted	Connections	349
	12.1	Introduction	349
	12.2	Types of Bolts	349
	12.3	History of High-Strength Bolts	350
	12.4	Advantages of High-Strength Bolts	351
	12.5	Snug-Tight, Pretensioned, and Slip-Critical Bolts	351
	12.6	Methods for Fully Tensioning High-Strength Bolts	354
	12.7	Slip-Resistant Connections and Bearing-Type Connections	357
	12.8	Mixed Joints	358
	12.9	Sizes of Bolt Holes	359
	12.10	Load Transfer and Types of Joints	360
	12.11	Failure of Bolted Joints	363
	12.12	Spacing and Edge Distances of Bolts	363
	12.13	Bearing-Type Connections—Loads Passing Through	
		Center of Gravity of Connections	367
	12.14	Slip-Critical Connections—Loads Passing Through	
		Center of Gravity of Connections	376
	12.15	Computer Example	382
		Problems	383
CHAPTER 13	Eccent	rically Loaded Bolted Connections and Historical Notes on Rivets	39(
	13.1	Bolts Subjected to Eccentric Shear	390
•	13.2	Bolts Subjected to Shear and Tension	403
	13.3	Tension Loads on Bolted Joints	400
	13.4	Prying Action	408
	13.5	Historical Notes on Rivets	413
	13.6	Types of Rivets	414
	13.7	Strength of Riveted Connections—Rivets in Shear	415
	13.8	Computer Example	418
4		Problems	419
CHAPTER 14	Welde	d Connections	429
	14.1	General	429
	14.2	Advantages of Welding	430
	14.3	American Welding Society	431
	14.4	Types of Welding	431
	14.5	Prequalified Welding	435
	14.6	Welding Inspection	435
	14.7	Classification of Welds	437
	14.8	Welding Symbols	44(
	14.9	Groove Welds	44(
	14.10	Fillet Welds	443

x Contents

	14.11	Strength of Welds	44
	14.12	LRFD Requirements	44
	14.13	Design of Simple Fillet Welds	45
	14.14	Design of Fillet Welds for Truss Members	45
	14.15	Shear and Torsion	46
	14.16	Shear and Bending	46
	14.17	Design of Moment-Resisting Connections	46
	14.18	Full-Penetration and Partial-Penetration Groove Welds	47
	14.19	Computer Examples	47
		Problems	47.
CHAPTI	ER 15 Build	ing Connections	48
	15.1	Selection of Type of Fastener	486
	15.2	Type of Beam Connections	48
	15.3	Standard Bolted Beam Connections	49:
	15.4	LRFD Manual Standard Connection Tables	49
	15.5	Designs of Standard Bolted Framed Connections	498
	15.6	Designs of Standard Welded Framed Connections	500
	15.7	Single-Plate or Shear Tab Framing Connections	502
	15.8	End-Plate Shear Connections	505
	15.9	Designs of Welded Seated Beam Connections	505
	15.10	Stiffened Seated Beam Connections	508
	15.11	Design of Moment-Resisting Connections	509
	15.12	Column Web Stiffeners	510
	15.13	Connection Design Aids—Handbooks and Computer Programs	513
		Problems	514
CHAPTE	R 16 Comp	osite Beams	516
	16.1	Composite Construction	516
	16.2	Advantages of Composite Construction	518
	16.3	Discussion of Shoring	518
	16.4	Effective Flange Widths	520
	16.5	Shear Transfer	521
	16.6	Partially Composite Beams	523
	16.7	Strength of Shear Connections	524
	16.8	Number, Spacing, and Cover Requirements for Shear Connections	525
	16.9	Moment Capacity of Composite Sections	527
	16.10	Deflections	532
	16.11	Design of Composite Sections	533
	16.12	Continuous Composite Sections	541
	16.13	Design of Concrete-Encased Sections	542
		Problems	545

		Contents	хi
CHAPTER 17	Compo	site Columns	550
	17.1	Introduction	550
	17.2	Advantages of Composite Columns	551
	17.3	Disadvantages of Composite Columns	553
	17.4	Lateral Bracing	553
	17.5	Specifications for Composite Columns	554
	17.6	Axial Design Strengths of Composite Columns	555
	17.7	LRFD Tables	558
	17.8	Flexural Design Strengths of Composite Columns	562
	17.9	Axial Load and Bending Equation	562
	17.10	Design of Composite Columns Subject to Axial Load and Bending	563
	17.11	Load Transfer at Footings and Other Connections	565
		Problems	565
CHAPTER 18	Built-U	Up Beams, Built-Up Wide-Flange Sections, and Plate Girders	568
	18.1	Cover-Plated Beams	568
	18.2	Built-Up Wide Flange Sections	570
	18.3	Introduction to Plate Girders	575
	18.4	Plate Girder Proportions	577
	18.5	Detailed Proportions of Webs	580
	18.6	Design of Plate Girders with Slender Webs, but with Full Lateral	
		Bracing for their Compact Compression Flanges	582
	18.7	Design of Plate Girders with Noncompact Flanges and without Full	505
		Lateral Bracing for Compression Flanges	585
	18.8	Design of Stiffeners	590
	18.9	Flexure-Shear Interaction	594
		Problems	600
CHAPTER 1	9 Desig	n of Steel Buildings	601
	19.1	Introduction to Low-Rise Buildings	601
	19.2	Types of Steel Frames Used for Buildings	601
	19.3	Common Types of Floor Construction	605
	19.4	Concrete Slabs on Open-Web Steel Joists	606
	19.5	One-Way and Two-Way Reinforced Concrete Slabs	609
	19.6	Composite Floors	611
	19.7	Concrete-Pan Floors	612
	19.8	Steel-Decking Floors	614
	19.9		614
	19.10	Precast Concrete Floors	61:
	19.11	Types of Roof Construction	61
	19.12	Exterior Walls and Interior Partitions	613
	19.13	Fireproofing of Structural Steel	61

xii Contents

	19.14	Introduction to High-Rise Buildings	(40
	19.15	Discussion of Lateral Forces	620
	19.16	****	621
	19.17		623
		Lateral Forces	628
	19.18	Moment-Resisting Joints	630
	19.19	Analysis of Buildings with Moment-Resisting Joints for	050
		Lateral Loads	632
	19.20	Analysis of Buildings for Gravity Loads	636
	19.21	Design of Members	639
CHAPTER 2	20 Desig	n of Steel Building Systems	641
	20.1	Introduction	641
	20.2	Design of Structural Steel Building	646
	20.3	Loads Acting on the Structural Frame	648
	20.4	Preliminary Design and Analysis	653
	20.5	Review of the Results and Design Changes	655
	20.6	The Design Sketches	656
	20.7	Concluding Comments	657
		Problems	658
APPENDIX	A Allow	able Stress Design	661
APPENDIX	B Deriva	ation of the Euler Formula	678
APPENDIX	APPENDIX C Slender Compression Elements		680
APPENDIX	D Flexur	ral-Torsional Buckling of Compression Members	683
APPENDIX	E Mome	nt-Resisting Column Base Plates	689
APPENDIX	F Pondin	ng .	697
GLOSSARY			701
INDEX			707