

IMPLEMENTING

SERVICE QUALITY

IN IP NETWORKS

Vilho Räisänen

Contents

Preface	xi
Acknowledgements	xv
List of Figures	xvii
List of Tables	xxi
Abbreviations	xxiii
1 Drivers for the Adoption of Multi-service Networks	1
1.1 Customer Perspective	2
1.2 Network Operator Perspective	4
1.3 Service Provider Perspective	6
1.4 Summary	7
2 Service Quality Requirements	9
2.1 Services on the Internet	12
2.2 Definition of a Service	16
2.2.1 End user service versus provider-level services	18
2.2.2 About service instances and service events	20
2.2.3 Reference model for this section	22
2.3 Service Quality Estimation	23
2.3.1 Measures of end user experienced service quality	24
2.3.2 Recency effect	26
2.3.3 Psychological factors	27
2.3.4 Summary	28
2.4 Service Implementation Aspects	28
2.4.1 Choice of transport protocols	28
2.4.2 Throughput adaptability of services	29
2.5 Inherent Service Quality Requirements	30
2.5.1 Service quality characterizations in standards	30
2.5.2 Availability of service	33

2.5.3 Continuity of service	34
2.5.4 Delivery time end-to-end	, 35
2.5.5 Throughput	38
2.5.6 Support for continuous service data unit transmise	sion 39
2.5.7 Reliability of service delivery	42
2,5.8 Support for variable transfer rate	. 44
2.5.9 Generic considerations related to service requirem-	ents 45
2.6 Service Quality Descriptors	47
2.6.1 Measurement-based determination of traffic profile	e 49
2.7 Summary	50
Network Mechanisms for Multi-service Quality Support	53
3.1 Introduction to Network Quality Support	54
3.2 Policing of Traffic at Ingress	. 58
3.3 About Layers	61
3.4 Types of Network Support for Service Quality	62
3.4.1 Capacity reservation	64
3.4.2 Differentiated treatment	65
3.4.3 Differentiation of service quality instantiation	67
3.4.4 Summary of generic network service quality support	ort
mechanisms	68
3.5 Service Support in ATM	69
3.5.1 ATM service models	70
3.5.2 Summary of ATM service support	70
3.6 Service Support Models in Internet Protocol	7 1
3.6.1 Best effort service model	72
3.6.2 Controlled-load service support	74
3.6.3 Guaranteed QoS support	<i>7</i> 5
3.6.4 RSVP	76
3.6.5 Statistical QoS: DiffServ model	77
3.6.5.1 EF PHB	<i>7</i> 9
3.6.5.2 AF PHB group	81
3.6.5.3 Other PHBs	81
3.6.5.4 Functions of a DiffServ router	82
3.6.5.5 Summary of DiffServ	83
3.6.6 Summary of IP QoS service models	83
3.7 Routing in IP Networks	85
3.7.1 On addressing	86
3.7.2 IP routing protocol-based methods	87
3.7.3 ATM overlays	88
3.7.4 Lower layer tunnels: MPLS	89
3.8 Link Layer Issues	90
3.8.1 Performance	92
3.8.2 A note on scheduling	93
3.9 Summary	Q/

'n		h

Traffic Engineering for Multi-service IP Networks	97
4.1 Traffic Engineering	98
4.1.1 Context of traffic engineering	100
4.1.2 The traffic engineering process	102
4.1.3 Obtaining performance data from the network and	
analysing it	104
4.1.3.1 Traffic aggregate performance measurements	105
4.1.3.2 Obtaining data relevant for routing control	110
4.1.4 Performance enhancement	113
4.1.5 Scope of network optimization	116
4.2 IP Routing Control and Traffic Engineering	117
4.2.1 Optimizing routing based on service quality	
characteristics	119
4.2.2 Traffic engineering using MPLS	120
4.2.2.1 DiffServ over MPLS	121
4.2.3 Traffic engineering using IP routing protocols	123
4.2.4 Summary	124
4.3 Configuration	125
4.3.1 Policy-based management	126
4.3.2 Policy-based management of DiffServ	129
4.3.2.1 Case study of policy-based management of	
DiffServ	130
4.4 Summary	132
5 Mapping Service Requirements to Network Resources	133
5.1 Scope of this Chapter	135
5.2 ETSI EP TIPHON Reference Model	137
5.2.1 Architecture	137
5.2.2 QoS model	140
5.2.3 Summary	141
5.3 QBONE	142
5.3.1 Service support models	143
5.3.2 Summary	144
5.4 3GPP QoS Model	145
5.4.1 QoS model	146
5.4.2 Summary	148
5.5 Other Models	148
5.6 Utility-based Allocation of Resources	149
5.6.1 Summary	152
5.7 Generic Resource Allocation Framework	152
5.7.1 Signalling	154
5.7.2 Mapping of services onto network resources	156
5.7.3 Network quality support configuration	1/0
for DiffServ	160 163
5.7.4 End-to-end service quality budgets	103

	5.7.4.1 Delay	164
	5.7.4.2 Delay variation	168
	5.7.4.3 Packet loss rate	1 7 1
	5.7.4.4 Packet loss correlation	172
	5.7.4.5 Throughput	173
	5.7.5 Optimization of resource allocation	174
	5.8 Summary	176
6	Service Level Management Techniques	179
	6.1 Models for Service Level Management	179
	6.1.1 Areas of service level management	180
	6.1.2 Layers of service level management	181
	6.1.3 Models for managed data	183
	6.2 Service Planning and Creation Process	184
	6.2.1 Interests of the customer	184
	6.2.2 Network operator viewpoint	187
	6.2.3 Service definition	188
	6.2.4 Reporting	190
	6.3 Service Level Agreements	191
	6.3.1 SLA and DiffServ	193
	6.3.2 SLA contents	196
	6.3.3 End user SLAs	197
	6.4 End-to-end Services	198
	6.4.1 Assumptions about connection endpoints	200
	6.4.2 Assumptions about per-domain service management	204
	6.4.3 Requirements for end-to-end service management	206
	6.5 Service Brokers and Charging	207
	6.6 Summary	209
7	Measurements	211
	7.1 Traffic Characterization	213
	7.2 Network Monitoring	216
	7.2.1 Troubleshooting measurements for services	217
	7.3 Traffic Control	219
	7.4 Definition of Measured Characteristics	22 0
	7.5 Sources of Measurement Data	222
	7.5.1 Measurement interfaces	222
	7.5.2 Measured characteristics	223
	7.6 Measurement Methods	225
	7.6.1 Obtaining performance data from network elements	225
	7.6.2 Monitoring a link	227
	7.6.3 Monitoring a route or node pair	228
	7.7 Traffic Engineering Measurement Infrastructure	230
	7.7.1 Measuring entity	230
	7.7.2 Interface to measuring entity	231
	7.7.3 Measurement control and analysis function	232
	7.8 Internet Service Quality Measurement Architectures	235

CONTENTS			lх

7.8.1 QBone measurement architecture	235
7.8.1.1 Discussion	241
7.8.2 Nokia Research Center measurement architecture	
demonstrator	241
7.8,2.1 Discussion	247
7.9 Summary	248
8 Mechanisms for Dynamic Service Quality Control	251
8.1 Previous Studies	254
8.1.1 Two-bit DiffServ architecture	255
8.1.2 Bandwidth broker in QBone architecture	256
8.1.2.1 Phase 0 Bandwidth Broker	259
8.1.2.2 Phase 1 Bandwidth Broker	259
8.1.3 QoS Agents .	261
8.2 Generic Model	263
8.2.1 Service quality support instantiation control	265
8.2.1.1 Signalling interface	266
8.2.1.2 Internal bandwidth broker operation	267
8.2.2 Domain control	268
8.2.2.1 Link to traffic engineering	269
8.2.2.2 Means of maintaining information about	070
resource availability	270
8.2.3 Inter-domain signalling	271
8.2.4 Link to service admission control	273
8.3 Summary	274
9 Case Study: Service Quality Support in an IP-based Cellular RAN	275
9.1 Motivation for Using IP-based Transport in Cellular RAN	276
9.2 IP RAN Transport Architecture	279
9.2.1 PLMN transport architecture	279
9.2.2 IP RAN transport architecture	281
9.2.3 Handover traffic	282
9.2.4 Service mapping in IP RAN	283
9.3 Traffic Engineering in All-IP RAN	285
9.3.1 Capacity planning	286
9.3.2 Capacity management	289
9.3.3 Traffic management	291
9.4 Enabling Technologies for Traffic Engineering in IP RAN	292
9.4.1 Policy-based management	292 294
9.4.2 Measurements	294
9.5 Inter-operation with IP-based Backbones and Roaming	295
Networks	293
9.6 Summary	270
10 Conclusion	299
10.1 IP as the Convergence Network	300
10.2 DiffServ	301
10.2.1 Complementary technologies for DiffServ	302

х	CONTENTS
100 0 1 7 110	
10.3 Service Level Management	303
10.4 Traffic Engineering	304
10.5 Potential Future Development Directions	305
References	307
r e	•

323

Index