
Edited by H. U. Blaser and E. Schmidt

Asymmetric Catalysis on Industrial Scale

Challenges, Approaches and Solutions

Contents

List of Contributors XXI

Introduct	on I
Hans-Uli	ich Blaser and Elke Schmidt
1	Background and Motivation 1
2	Goals and Concept 1
3	Our (the Editors) Assessment of the Resulting Monograph 2
4	The Organization of the Book
	(Types of Intermediates – Catalysts – Situations) 3
4.1	Category. New Processes for Existing Active Compounds 5
4.2	Category II: New Catalysts and/or Processes for Important Building
	Blocks 5
4.3	Category III: Adaptation of Existing Catalysts for Important Building
	Blocks 6
4.4	Category IV: Processes for New Chemical Entities (NCE) 6
5	Missing Processes 6
6	Some Important Messages 9
6.1	Transformations and Catalyst Types 10
6.2	Scale, Development Stage 13
6.3	Synthesis Planning and Time Lines 13
6.4	Major Technical Problems 14
6.5	Technology and Patents 14
7	Final Comments and Conclusions 15
8	Glossary 16
9	References 18

ı	Contents	
	1	New Processes for Existing Active Compounds 21
	1	Asymmetric Hydrogenations - The Monsanto L-Dopa Process 23 William S. Knowles
	1.1	The Development of Chiral Phosphane Ligands 23
	1.2	Synthesis and Properties of the Phosphanes 31
	1.3	Mechanism of the Asymmetric Catalysis 35
	1.4	Concluding Comments 37
	1.5	Acknowledgements 38
	1.6	References 38
	2	The Other L-Dopa Process 39 Rüdiger Selke
	2.1	Introduction 39
	2.2	Choice of the Substrate 42
	2.3	The Catalyst 44
	2.4	Improving the Hydrogenation Reaction 45
	2.5	Effect of Solvent and Anions 46
	2.6	Immobilization of the Catalyst 49
	2.7	Production Process 49
	2.8	Acknowledgements 52
	2.9	References 52
	3	The Chiral Switch of Metolachlor: The Development
		of a Large-Scale Enantioselective Catalytic Process 55
		Hans-Ulrich Blaser, Reinhard Hanreich, Hans-Dieter Schneider,
		Felix Spindler, and Beat Steinacher
	3.1	Introduction and Problem Statement 55
	3.2	Route Selection 56
	3.2.1	Enamide Hydrogenation 56
	3.2.2	Nucleophilic Substitution of an (R)-Methoxyisopropanol Derivative 57
	3.2.3	Hydrogenation of MEA Imine 57
	3.2.4	Catalytic Alkylation with Racemic Methoxyisopropanol 58
	3.2.5	Assessment and Screening of the Proposed Routes 58
	3.3	Imine Hydrogenation: Laboratory Process 59
	3.3.1	Finding the Right Metal-Ligand Combination 59
	3.3.1.1	Screening of Rh-Diphosphine Complexes 59
	3.3.1.2	Screening of Ir-Diphosphine Complexes 60
	3.3.1.3	Synthesis and Screening of a New Ligand Class 60
	3.3.2	Optimization of Reaction Medium and Conditions 61
	3.3.3	Ligand Fine Tuning 61
	3.4	Imine Hydrogenation: Technical Process 62
	3.4.1	Strategy for Process Development 62
	3.4.2	The Production of the MEA Imine at the Required Quality 62
	3.4.3	Scale-up of the Ligand Synthesis 63

3.4.4	Fine Optimization of the Ir-Catalyst Formulation 65
3.4.5	Choice of Reactor Technology 65
3.4.6	Scale-Up to the Production Autoclave 66
3.4.7	Work-up, Separation of the Catalyst from the Product 67
3.5	Summary and Conclusions 68
3.6	Acknowledgements 69
3.7	References 69
4	Enantioselective Hydrogenation:
	Towards a Large-Scale Total Synthesis of (R,R,R)-α-Tocopherol 71
	Thomas Netscher, Michelangelo Scalone, and Rudolf Schmid
4.1	Introduction: Vitamin E as the Target 71
4.2	Routes to (2R,4'-R,8'R)-a-Tocopherol by Total Synthesis 74
4.3	Synthesis of Prochiral Allylic Alcohols 76
4.4	Asymmetric Hydrogenation of Prochiral Allylic Alcohols 78
4.5	Synthesis of the Diphosphane Ligands 81
4.6	Procedures for Stereochemical Analysis 84
4.7	Concluding Remarks 86
4.8	Acknowledgements 87
4.9	References 87
5	Comparison of Four Technical Syntheses
	of Ethyl (R)-2-Hydroxy-4-Phenyibutyrate 91
	Hans-Ulrich Blaser, Marco Eissen, Pierre F. Fauquex,
	Konrad Hungerbühler, Elke Schmidt, Gottfried Sedelmeier,
	and Martin Studer
5.1	Introduction 91
5.2	Synthetic Pathways to HPB Ester 92
5.2.1	Route A: Synthesis and Enantioselective Reduction of Keto Acid 3
	with Immobilized Proteus vulgaris Followed by Esterification 94
5.2.2	Route B: Enantioselective Reduction of 3 with D-LDH
	in a Membrane Reactor 94
5.2.3	Route C. Synthesis and Enantioselective Hydrogenation
	of Keto Ester 5 95
5.2.4	Route D: Synthesis and Enantioselective Hydrogenation
	of Diketo Ester 6, Followed by Hydrogenolysis 95
5.3	Comparison of Routes A-D with Respect to Mass Consumption, Environmental, Health and Safety Aspects 96
5.3.1	Definitions 96
5.3.2	Overall Material Masses Consumed and Produced for Routes A-D 97
5.3.3	Mass Consumption of the Reduction Systems A-D 98
5.3.4	Problematic Chemicals: Environmental,
	Health and Safety Aspects (EHS) 99
5.3.4.1	Safety Aspects 99
5342	Health/Toxicology 100

VIII	Contents	*****
	5.3.4.3	Environment 100
	5.4	Overall Comparison of Routes A-D and General Conclusions 100
	5.4.1	Conclusions for the Reduction Steps 100
	5.4.2	Conclusions for the Overall Syntheses 101
	5.5	References 103
	6	Biocatalytic Approaches for the Large-Scale Production of Asymmetric Synthons 105 Nicholas M. Shaw, Karen T. Robins, and Andreas Kiener
	6.1	Introduction 105
	6.2	Asymmetric Biocatalysis 106
	6.2.1	I-Carnitine 106
	6.2.2	Asymmetric Reduction: (R)-Ethyl-4,4,4-trifluorohydroxybutanoate 107
	6.3	Resolution of Racemic Mixtures 108
	6.3.1	(R)- and (S)-3,3,3-Trifluoro-2-hydroxy-2-methylpropionic Acid 108
	6.3.2	(S)-2,2-Dimethylcyclopropane Carboxamide 111
	6.3.3	CBZ-D-proline [(R)-N-CBZ-proline] 113
	6.3.4	(1R,4S)-1-Amino-4-hydroxymethyl-cyclopent-2-ene 114
	6.4	Summary 114
	6.5	References 115
	7	7-Aminocephalosporanic Acid – Chemical Versus Enzymatic Production Process 117 Thomas Bayer
	7.1	Introduction 117
	7.2	Synthesis of 7-ACA 119
	7.2.1	The Chemical 7-ACA Route 120
	7.2.2	Single Step Biocatalytic 7-ACA Synthesis 121
	7.2.3	Two-step Biocatalytic 7-ACA Synthesis 122
	7.2.4	Two-Step Biocatalytic Process 125
	7.2.4.1	Oxidation 126
	7.2.4.2	Deacylation 127
	7.3	Comparison of Chemical and Two-Step Biocatalytic 7-ACA Process 127
	7.4	Conclusion 129
	7. 4	References 130
	8	Methods for the Enantioselective Biocatalytic Production of L-Amino Acids on an Industrial Scale 131 Harald Gröger and Karlheinz Drauz
	8.1	Introduction 131
	8.2	L-Amino Acids via Enzymatic Resolutions 133
	8.2.1	Processes Using L-Amino Acylases 133
	8.2.2	Processes Using L-Amidases 135
	922	Processes Maine : Undertainens 127

8.2.4	Processes via Lactam Hydrolysis 139
8.3	L-Amino Acids via Asymmetric Biocatalysis 140
8.3.1	Processes via Reductive Amination 140
8.3.2	Processes via Transamination 142
8.3.3	Processes via Addition of Ammonia to a,β-Unsaturated Acids 143
8.4	Conclusion 145
8.5	References 145
II	New Catalysts for Existing Active Compounds 149
1	The Large-Scale Biocatalytic Synthesis of Enantiopure Cyanohydrins 151 Peter Poechlauer, Wolfgang Skranc, and Marcel Wubbolts
1.1	Introduction 151
1.2	Chiral Cyanohydrins as Building Blocks in the Synthesis
	of Fine Chemicals 151
1.3	Synthesis of Enantiopure Cyanohydrins 152
1.3.1	General Methods 152
1.3.1.1	Sources of HCN 152
1.3.1.2	The Sources of Chirality of Cyanohydrins 153
1,3,2	Syntheses via Chiral Metal Catalysts 154
1.3.3	Cyanohydrin Synthesis via Cyclic Dipeptides 154
1.3.4	The Cyanohydrin Synthesis via Lipases 156
1.3.5	Synthesis of Chiral Cyanohydrins Using Hydroxy Nitrile Lyases (HNLs) 157
1.4	Large-Scale Cyanohydrin Production 158
1.4.1	General Considerations 158
1.4.2	Scale-up of HNL-Catalyzed Cyanohydrin Formation 159
1.5	Examples of Large-Scale Production of Cyanohydrins 161
1.5.1	Production of (S)-3-Phenoxybenzaldehyde Cyanohydrin (SCMB) 162
1.5.2	Production of (R)- and (S)-Mandelic Acid Derivatives 163
1.6	Summary 163
1.7	References 163
2	Industrialization Studies of the Jacobsen Hydrolytic Kinetic Resolution
	of Epichlorohydrin 165
	Larbi Aouni, Karl E. Hemberger, Serge Jasmin, Hocine Kabir,
	Jay F. Larrow, Isidore Le-Fur, Philippe Morel, and Thierry Schlama
2.1	Background 165
2.2	The HKR Catalyst 166
2.2.1	Preparation and Isolation of Active Catalyst 167
2.2.2	Activation Step Characterization 169
2.2.2.1	Quantitative Analysis of Co(II) and Co(III) Species 169
2.2.2.2	Kinetic Limitation of the Co(II) to Co(III) Oxidation Reaction 169
2.2.3	Scale-up Considerations for the (Salen)-Co(III)-OAc Process 174
2.3	Kinetic Modelling and Simulation of the HKR Reaction 176

١	Contents	
•	2.3.1	Objectives and Approach 176
	2.3.2	Development of a Global Reaction Scheme 177
	2.3.3	Kinetic Modelling 179
	2.3.3.1	Kinetic Rate Equations and Assumptions 179
	2.3.3.2	Experimentation and Kinetic Model for a Fed-Batch Vessel 180
	2.3.3.3	Parameter Deviation Study 188
	2.4	HKR Process Optimization and Scale-up 190
	2.4.1	Process Description 190
	2.4.2	Process Optimization 190
	2.4.2.1	HKR Stage Optimization 191
	2.4.2.1.1	Shortcut Optimization Method 191
	2.4.2.1.2	Process Temperature Control 193
	2.4.2.2	Isolation of Resolved Epichlorohydrin 196
	2.4.2.2.1	Reaction Medium Stabilization 196
	2.4.2.2.2	Azeotropic Drying and Epichlorohydrin Isolation 197
	2.5	Conclusions 198
	2.6	References 199
	3	Scale-up Studies in Asymmetric Transfer Hydrogenation 201
		John Blacker and Juliette Martin
	3.1	Background 201
	3.2	The Catalytic System 202
	3.2.1	Catalyst 202
	3.2.2	Hydrogen Donor 206
	3.2.3	Substrate 209
	3.3	Process 210
	3.3.1	Temperature 211
	3.3.2	Reactant Concentration 211
	3.3.3	Reaction Control 212
	3.4	Case Studies 212
	3.4.1	Example 1: (R)-1-Tetralol 212
	3.4.2	Example 2: (S)-4-Fluorophenylethanol 213
	3.4.3	Example 3: (R)-N-Diphenylphosphinyl-1-methylnaphthylamine 213
	3.5	Conclusions 214
	3.6	Acknowledgements 215
	3.7	References 216
	4	Practical Applications of Biocatalysis for the Manufacture of Chiral Alcohols
		such as (R)-1,3-Butanediol by Stereospecific Oxidoreduction 217
		Akinobu Matsuyama and Hiroaki Yamamoto
	4.1	Introduction 217
	4.2	Screening of Microorganisms Producing Optically Active 1,3-BDO
		from 4-Hydroxy-2-butanone (4H2B) by Asymmetric Reduction 219
	4.3	Screening of Microorganisms Producing Optically Active 1,3-BDO
		from the Racemate 221

4.4	Preparation of (R)- and (S)-1,3-BDO by the Same Strain or from the Same Material 222
4.5	Large-Scale Preparation of (R)-1,3-BDO from the Racemate Using Candida parapsilosis IFO 1396 223
4.6	Purification and Characterization of (S)-1,3-Butanediol Dehydrogenass from Candida parapsilosis IFO 1396 225
4.7	Cloning and Expression of a Gene Coding for a Secondary Alcohol Dehydrogenase from Candida parapsilosis IFO 1396 in Eschericha coli 226
4.8	Preparation of Ethyl (R)-4-Chloro-3-hydroxybutanoate (ECHB) by Recombinant E. coli Cells Expressing CpSADH 230
4.9	Conclusion and Outlook 231
4.10	References 231
5	Production of Chiral C3 and C4 Units via Microbial Resolution
	of 2,3-Dichloro-1-propanol, 3-Chloro-1,2-propanediol
	and Related Halohydrins 233
	N. Kasai and T. Suzuki
5.1	Introduction 233
5.2	C3 Chiral Synthetic Units 235
5.2.1	(R)- and (S)-2,3-dichloro-1-propanol (DCP) 235
5.2.1.1	(R)-2,3-Dichloro-1-propanol (DCP) Assimilating Bacterium
	for (S)-2,3-Dichloro-1-propanol (DCP) and (R)-epichlorohydrin (EP)
	Production 235
5.2.1.2	(S)-Epichlorohydrin (EP) Production and Isolation
	of a DCP Assimilating Bacterium 236
5.2.2	Large-Scale Trials Using Immobilized Cells 236
5.2.2.1	Production on a 100 L Scale 236
5.2.2.2	Production on a 5000 L Scale 237
5.2.3	Production of (R)- and (S)-3-Chloro-1,2-propanediol (CPD)
	and (R)- and (S)-Glycidol (GLD) 238
5.2.3.1	Screening of (R)- and (S)-3-Chloro-1,2-propanediol (CPD) Assimilating Bacteria 238
5.2.4	Scale-up of the Production of C3 Chiral Synthetic Units 239
5.2.4.1	Fed-Batch Fermentation and Control 239
5.2.4.2	Control Logic System 240
5.3	Production of C4 Chiral Synthetic Units 245
5.3.1	Production of 4-Chloro-3-acetoxybutyronitrile (BNOAc)
	by Ester-Degrading Enzymes 246
5.3.2	Production of (R)-4-Chloro-3-hydroxy-butyrate (CHB)
	and (S)-3-hydroxy-y-butyrolactone (HL) by Enterobacter sp. 247
5.3.2.1	Cultivation and Preparation of Enterobacter sp. Resting Cells with High Degradation Activity 248

vii l	Contents	
····		To Coal Designation of (D) 4 Chlory 2 hadrons have not (CHD) and
	5.3.2.2	Ton-Scale Production of (R)-4-Chloro-3-hydroxy-butyrate (CHB) and (S)-3-Hydroxy-y-butyrolactone (HL) by the Resting Cells of Enterobacter sp. 251
	5.3.2.3	Effect of Base on the Stereoselectivity of Enterobacter sp. 252
	5.3.2.4	Intelligent Production of (R)-Methyl 4-chloro-3-hydroxybutyrate
	J.J.2.	(CHBM) and (S)-3-Hydroxy-y-butyrolactone (HL) with a
		Fed-Batch System of Substrate 253
	5.4	Purification of Chiral Units 253
	5.5	Racemization 255
	5.6	References 256
	III	Adaptation of Existing Catalysts for Important Building Blocks 257
	1	Synthesis of Unnatural Amino Acids 259
		David J. Ager and Scott A. Laneman
	1.1	Introduction 259
	1.2	Scope of Enamide Substrates 260
	1.3	Preparation of Enamides 263
	1.4	Mechanism 264
	1.5	Ligand Synthesis 265
	1.6	Other Substrates 266
	1.7	Summary 267
	1.8	References 268
	2	The Application of DuPHOS Rhodium(I) Catalysts for Commercial Scale
		Asymmetric Hydrogenation 269
		Christopher J. Cobley, Nicholas B. Johnson, Ian C. Lennon,
		Raymond McCague, James A. Ramsden, and Antonio Zanotti-Gerosa
	2.1	Introduction 269
	2.2	Large-Scale Manufacture of a-Amino Acids 271
	2.2.1	N-Boc-(S)-3-Fluorophenylalanine 272
	2.2.2	Experimental for N-t-Butoxycarbonyl-(S)-3-fluorophenylalanine 273
	2.2.2.1	N-Acetyl Dehydro-3-fluorophenylalanine 8
		via an Azlactone Intermediate 273
	2.2.2.2	N-Acetyl-3-fluorophenylalanine 9 274
	2.2.2.3	N-BOC-(S)-3-fluorophenylalanine 10 274
	2.3	Practical and Economic Considerations for Manufacture 274
	2.3.1	Manufacture and Choice of Precatalysts 275
	2.3.2	Substrate Synthesis, Purity and Catalyst Loading 276

Catalyst Charging 278
Catalyst Removal 279

Conclusions 280

References 281

2.3.3 2.3.4 2.4

2.5

3	Liberties and Constraints in the Development of Asymmetric Hydrogenations on a Technical Scale 283 John F. McGarrity, Walter Brieden, Rudolf Fuchs, Hans-Peter Mettler, Beat Schmidt, and Oleg Werbitzky
3.1	Introduction 283
3.2	Asymmetric Hydrogenation in the Lonza Biotin Process 284
3.2.1	Historical Development 284
3.2.2	Laboratory Screening Experiments 286
3.2.2.1	Ligand Screening 286
3.2.2.2	Substrate Screening 287
3.2.2.3	Parameter Screening and Optimization 290
3.2.3	Scale-up and Production 291
3.2.4	Preparation of Josiphos (R)-(S)-PPF-P(Bu) ₂ on a Technical Scale 293
3.2.5	Conclusions 292
3.3	The Lonza Dextrometorphan Process 293
3.3.1	Introduction 293
3.3.2	Imine Hydrogenation 294
3.3.2.1	Background 294
3.3.2.2	Screening Experiments 295
3.3.2.3	Optimization Phase: Development of an Economic Process 296
3.3.3	Scale-up 297
3.3.4	Conclusion 298
3.4	4-Boc-piperazine-2(S)-N-butylcarboxamide 299
3.4.1	Introduction 299
3.4.2	Initial Studies 299
3.4.3	Scale-up 301
3.4.4	Further Improvements in Synthetic Strategy 302
3.4.5	Conclusions 303
3.5	Intermediates for SB-214857 (Lotrafiban) 303
3.5.1	Introduction 303
3.5.2	Initial Screening of Catalysts 304
3.5.3	Statistically Evaluated Screening of Experimental Conditions 306
3.6	References 308
4	Large-Scale Applications of Biocatalysis in the Asymmetric Synthesis of Laboratory Chemicals 309 Roland Wohlgemuth
4.1	Introduction 309
4.2	History of Applied Biocatalysis at Fluka 310
4.2.1	Resolution of Racemic Mixtures 311
4.2.1.1	Resolution of Racemic Amino Acids 311
4.2.1.2	Resolution of Racemic Alcohols 311
4.2.2	Decomposition Reactions of Educts and Side Products 311
4.2.3	Introduction and Removal of Protecting Groups 311
4.2.4	Development and Production of Biocatalysts 312

4.2.5	Complex Reaction Paths to Natural Products 312
4.2.6	Regio- and Stereoselective Synthesis 313
4.3	Reasons for Large-Scale Application of Biocatalysts for the Synthesis
	of Laboratory Chemicals 314
4.4	Examples of Large-Scale Application of Biocatalysis 314
4.4.1	Matrix Approach: Product Groups Produced with Specific Enzyme Classes 314
4.4.2	(S)-2-Octanol 315
4.4.3	(R)-2-Octanol 316
4.4.4	Comparison of Classical Resolution
	with the Biocatalytic Procedure 316
4.4.5	2-Oxabicyclo[3.3.0]-oct-6-en-3-one 316
4.4.6	3-Oxabicyclo[3.3.0]-oct-6-en-2-one 317
4.4.7	Comparison of the Classical Procedure
	with the Biocatalytic Baeyer-Villiger Reaction 317
4.5	Discussion and Outlook 318
4.6	References 318
IV	Processes for New Chemical Entitles (NCE) 321
1	Development of an Efficient Synthesis of Chiral 2-Hydroxy Acids 323 Junhua Tao and Kevin McGee
1.1	Introduction 323
1.2	Results and Discussion 326
1.3	Conclusion 330
1.4	Experimental Section 331
1.4.1	General Remarks 331
1.4.2	Sodium 3-(4-Fluorophenyl)-2-oxo-propionate (6) 331
1.4.3	(R)-3-(4-Fluorophenyl)-2-hydroxy propionic acid (1) 331
1.4.4	Reactor Set-up and Preparation 332
1.4.5	Enzyme Loading and Replenishment 333
1.5	Acknowledgment 333
1.6	References 333
2	Factors Influencing the Application of Literature Methods
	Toward the Preparation of a Chiral trans-Cyclopropane Carboxylic Acid
	Intermediate During Development of a Melatonin Agonist 335
	Ambarish K. Singh, J. Siva Prasad, and Edward J. Delaney
2.1	Introduction 335
2.2	Chemical Approach Employed During Preclinical Research and Development (Route A) 336
2.3	Chemical Approaches Employed to Support Early Clinical
د.ع	Development (Route B 338
2.4	Development of Process Technology to Support Phase II/III Clinical
	Studies and Future Commercialization (Routes C and D) 339

XIV | Contents

2.4.1	Enzymatic Approaches to Convert 3 into 19 341	
2.4.2	Chemical Approaches to Convert 5 into 19 341	
2.5	Definition of Process Technology for the Optimal Route	
	(Route D) 343	
2.6	Summary and Conclusions 345	
2.7	Acknowledgement 347	
2.8	References 347	
3	Hetero Diels-Alder-Biocatalysis Approach for the Synthesis	
	of (S)-3-[2-{(Methylsulfonyl}oxy]ethoxy]-4-(triphenylmethoxy)-	
	1-butanol Methanesulfonate: Successful Application	
	of an Enzyme Resolution Process 349	
	Jean-Claude Caille, Jim Lalonde, Yiming Yao, and C.K. Govindan	
3.1	Introduction 349	
3.2	The Hetero Diels-Alder-Biocatalysis Strategy 350	
3.3	Hetero Diels-Alder Reaction: Synthesis of 2-Ethoxycarbonyl-3,6-	
	dihydro-2H-pyran, (R,S)-4 352	
3.4	Enzymatic Resolution of (R,S)-4 353	
3.4.1	Secondary Screen and E Determination 353	
3.4.2	Protease Screen 354	
3.4.3	Optimization of the Resolution of (R,S)-4 355	
3.4.3.1	Buffer pH and Concentration 355	
3.4.3.2	Optimization of Enzyme Loading and Other Parameters 356	
3.5	Pilot Plant Trials 358	
3.6	Attempted Resolution of 3,6-Dihydro-2H-pyran-2-ylmethanol,	
	(R,S)-5 358	
3.7	Experimental 359	
3.7.1	Hydrolase Library Screening – Hydrolysis of (R,S)-4 359	
3.7.2	Gram Scale Runs 359	
3.7.3	Butyl Ester 360	
3.7.4	Determination of Enantiomeric Purity by Gas Chromatography	360
3.7.5	Resolution of (R,S)-4 360	
3.7.6	Reduction of (S)-4 361	
3.7.7	Tritylation of 5 361	
3.7.8	Reductive Ozonolysis of (S)-2-Trityloxymethyl-3,6-dihydro-2H-	
	pyran, 6 361	
3.7.9	Preparation of 1 362	
3.8	Summary 362	
3.9	References 363	

Ī	
4	Multi-Kilo Resolution of XU305, a Key Intermediate to the Platelet
	Glycoprotein IIb/IIIa Receptor Antagonist Roxifiban via Kinetic
	and Dynamic Enzymatic Resolution 365
	Jaan A. Pesti and Luigi Anzalone
4.1	Introduction 365
4.2	Scale-up of the Kinetic Enzymatic Resolution of 9 to 1 367
4.2.1	Development of the Resolution of (R,S)-9 368
4.2.2	Racemization of 9 369
4.2.2.1	Mechanism of Isoxazoline (9) Racemization 370
4.3	Process Development of the Dynamic Enzymatic Resolution of Thioester 10 b 372
4.3.1	Identification of Efficient Reaction Conditions for Dynamic Enzymatic Resolution 373
4.3.2	Preparation of 1-Propyl Thioester (10b) 377
4.3.3	Scale-up of the Dynamic Enzymatic Resolution Chemistry into the
	Plant 379
4.4	Conclusions 380
4.5	Acknowledgements 381
4.6	References 381
	301
5	Protease-Catalyzed Preparation of (5)-2-[(tert-Butylsulfonyl)methyl]-
	hydrocinnamic Acid for Renin Inhibitor RO0425892 385
	Beat Wirz, Stephan Doswald, Ernst Kupfer, Wolfgang Wostl,
	Thomas Weisbrod, and Heinrich Estermann
5.1	Introduction 385
5.2	The Process Research Synthesis 387
5.2.1	The Synthetic Concept 387
5.2.2	Alternative Concepts 387
5.2.3	Enzymatic Approaches 388
5.2.3.1	Racemic Resolution of Ethyl Sulfopropionate 2
5121511	with a-Chymotrypsin 388
5.2.3.2	Aminolysis of Ethyl Sulfopropionate 2 with Histidine
3,2,3,2	Methylester 4 388
5.3	Enzymatic Resolution of Ethyl Sulfopropionate 2
3.5	
5.3.1	with Subtilisin Carlsberg 389 Process Research 389
5.3.1.1	Enzyme Screening 389
5.3.1.2	
5.3.1.3	Parameter Optimization 390 Work-up 390
5.3.2	•
5.3.2.1	Process Development 391 Process Parameters 391
5.3.2.1	
5.3.2.2 5.3.2.3	Improved Enzyme Preparation 392
5.3.2.3.1	Work-up 392
5.3.2.3.2	Equipment 393 Isolation of Sulforronionic Acid (5).3 202
J.J.L.J.L	ISOIAUUN OI SUHONTONIONIC ACIA ISUA 393

XVI | Contents

5.3.3	Pilot Production 394
5.3.3.1	Equipment 394
5.3.3.2	Enzyme Reaction 395
5.3.3.3	Work-up 395
5.4	Discussion 395
5.5	Acknowlegements 396
5.6	References 397
6	Protease-Catalyzed Preparation of Chiral 2-Isobutyl
	Succinic Acid Derivatives for Collagenase Inhibitor RO0319790 399
	Beat Wirz, Milan Soukup, Thomas Weisbrod, Florian Stäbler,
	and Rolf Birk
6.1	Introduction 399
6.2	The Process Research Synthesis 401
6.2.1	The Synthetic Concept 401
6.2.2	Alternative Concepts 401
6.2.3	Enzymatic Approaches 401
6.2.3.1	Racemic Resolution of Nitrile Ester 10 401
6.2.3.2	Enantio- and Regioselective Monohydrolysis of Diester 9 402
6.2.3.3	Aminolysis in Organic Solvent Systems 403
6.2.3.4	Coupling of (R)-2a with Amine 13 in Aqueous Milieu 403
6.3	Enzymatic Resolution of Diethyl 2-Isobutyl Succinate 9 403
6.3.1	Process Research 403
6.3.1.1	Selection of the Enzyme 403
6.3.1.2	Parameter Optimization 404
6.3.1.3	Substrate Engineering 405
6.3.1.4	Work-up 406
6.3.1.5	Racemization of the Antipodal Diester (S)-9 406
6.3.2	Process Development 406
6.3.2.1	Process Parameters 406
6.3.2.2	Work-up 407
6.3.2.3	Racemization 408
6.3.3	Pilot Production 408
6.3.3.1	Equipment 408
6.3.3.2	Enzyme Reaction 408
6.3.3.3	Work-up 409
6.4	Discussion 409
6.5	Acknowledgments 410
6.6	References 410

1	Contents	
	7	An Innovative Asymmetric Sulfide Oxidation: The Process Development
		History Behind the New Antiulcer Agent Esomeprazole 413
		Hans-Jürgen Federsel and Magnus Larsson
	7.1	Major Events at a Glance: An Overview of Achievements
		from 1979–2000 414
	7.2	Introduction: Omeprazole (Losec®) as the Starting Point
		for a Challenging Project 414
	7.3	Early Attempts: Turning Unfavorable Odds into Success at Last 416
	7.4	The Way Forward: Options and Development Strategies 420
	7.5	The Breakthrough: What a Difference a Day Made! 423
	7.5.1	The Base 423
	7.5.2	The Solvent 424
	7.5.3	The Chiral Auxiliary 424
	7.5.4	The Amount of H ₂ O 424
	7.5.5	The Effect of Oxidation Time 425
	7.6	Going from a Bench-scale Synthesis to a Fully Fledged Process 425
	7.6.1	Solvent 426
	7.6.2	Base 426
	7.6.3	Composition of Titanium Complex 426
	7.6.4	Equilibration of Titanium Complex 427
	7.6.5	Equivalents of Ti-Complex 427
	7.6.6	Layout of Synthesis 428
	7.7	The Big Test: Going to Plant Scale 428
	7.8	Reaching the Final Target: A Robust Commercial Process 431
	7.8.1	Water 431
	7.8.2	Diethyl Tartrate 431
	7.8.3	Hünigs Base 432
	7.8.4	Cumene Hydroperoxide 432
	7.8.5	Stability of the Catalytic Complex 432
	7.8.6	Reaching the Goal - A Robust Process 433
	7.9	Points to Learn and Conclusions 434
	7.10	Acknowledgements 435
	7.11	References 435
	8	Development of a Biocatalytic Process for the Resolution
		of (R)- and (S)-Ethyl-3-amino-4-pentynoate Isomers
		Using Enzyme Penicillin G Amidohydrolase 437
		Ravindra S. Topgi
	8.1	Introduction 437
	8.2	Enzymatic Approach 437
	8.2.1	Deacylation 438
	8.2.2	Acylation 440
	8.3	Optimization of Reaction Conditions 441
	8.3.1	The Enzyme Penicillin G Amidohydrolase 441
	8.3.2	Reaction Monitoring 441

8.3.3	And Come Confidence 442
0.3.3	Acyl Group Specificities 442
8.3.4	Organic Co-solvent 442
8.3.5	Phosphate Buffer 443
8.3.6	pH of the Reaction Medium 443
8.3.7	Optimum Amount of Acylating Agent 443
8.3.8	Optimum Amount of Enzyme 444
8.3.9	Optimum Amount of Substrate 445
8.3.10	Optimum Reaction Volume 445
8.3.11	Enzyme Activity 446
8.3.12	Design of Experiment Study 446
8.4	Conclusion 447
8.5	Acknowledgments 448
8.6	References 448

Subject Index 451